Skip to main content
Log in

Continuous Dependence on the Density for Stratified Steady Water Waves

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

There are two distinct regimes commonly used to model traveling waves in stratified water: continuous stratification, where the density is smooth throughout the fluid, and layer-wise continuous stratification, where the fluid consists of multiple immiscible strata. The former is the more physically accurate description, but the latter is frequently more amenable to analysis and computation. By the conservation of mass, the density is constant along the streamlines of the flow; the stratification can therefore be specified by prescribing the value of the density on each streamline. We call this the streamline density function.

Our main result states that, for every smoothly stratified periodic traveling wave in a certain small-amplitude regime, there is an L neighborhood of its streamline density function such that, for any piecewise smooth streamline density function in that neighborhood, there is a corresponding traveling wave solution. Moreover, the mapping from streamline density function to wave is Lipschitz continuous in a certain function space framework. As this neighborhood includes piecewise smooth densities with arbitrarily many jump discontinues, this theorem provides a rigorous justification for the ubiquitous practice of approximating a smoothly stratified wave by a layered one. We also discuss some applications of this result to the study of the qualitative features of such waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick, C.J.: Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11, 441–499 (1984)

  2. Amick C.J., Turner R.E.L.: A global theory of internal solitary waves in two-fluid systems. Trans. Am. Math. Soc. 298, 431–484 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benjamin T.B.: A unified theory of conjugate flows. Philos. Trans. R. Soc. London Ser. A 269, 587–643 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Camassa R., Tiron R.: Optimal two-layer approximation for continuous density stratification. J. Fluid Mech. 669, 32–54 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Chen, R.M., Walsh, S.: Reconstruction of stratified steady water waves from pressure readings (2014). Preprint arXiv:1502.07775

  6. Clamond, D., Constantin, A.: Recovery of steady periodic wave profiles from pressure measurements at the bed. J. Fluid Mech. 714, 463–475 (2013)

  7. Constantin, A.: On the recovery of solitary wave profiles from pressure measurements. J. Fluid Mech. 699, 376–384 (2012)

  8. Constantin A., Strauss W.: Periodic traveling gravity water waves with discontinuous vorticity. Arch. Ration. Mech. Anal. 202, 133–175 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dong, H., Kim, D.: Elliptic equations in divergence form with partially BMO coefficients. Arch. Ration. Mech. Anal. 196, 25–70 (2010)

  10. Dubreil-Jacotin, M.: Sur les theoremes d’existence relatifs aux ondes permanentes periodiques a deux dimensions dans les liquides heterogenes. J. Math. Pures Appl. 16, 43–67 (1937)

  11. Escher, J., Matioc, A.-V., Matioc, B.-V.: On stratified steady periodic water waves with linear density distribution and stagnation points. J. Differ. Equ. 251, 2932–2949 (2011)

  12. Fructus D., Grue J.: Fully nonlinear solitary waves in a layered stratified fluid. J. Fluid Mech. 505, 323–347 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 2001

  14. Grue, J., Jensen, A., Rusås, P.-O., Sveen, J.K.: Properties of large-amplitude internal waves. J. Fluid Mech. 380, 257–278 (1999)

  15. Grue, J., Jensen, A., Rusås, P.-O., Sveen, J.K.: Breaking and broadening of internal solitary waves. J. Fluid Mech. 413, 181–217 (2000)

  16. Henry D., Matioc A.-V.: Global bifurcation of capillary-gravity stratified water waves. Proc. Roy. Soc. Edinburgh Sect. A 144(4), 775–786 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Henry, D., Matioc, B.-V.: On the existence of steady periodic capillary-gravity stratified water waves. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12(4), 955–974 (2013)

  18. James, G.: Internal travelling waves in the limit of a discontinuously stratified fluid. Arch. Ration. Mech. Anal. 160, 41–90 (2001)

  19. Kirchgässner, K.: Wave-solutions of reversible systems and applications. J. Differ. Equ. 45, 113–127 (1982)

  20. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Leon Ehrenpreis. Academic Press, New York, 1968

  21. Long, R.R.: Some aspects of the flow of stratified fluids. I. A theoretical investigation. Tellus 5, 42–58 (1953)

  22. Oliveras K., Vasan V., Deconinck B., Henderson D.: Recovering surface elevation from pressure data. SIAM J. Appl. Math. 72, 897–918 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pucci, P., Serrin, J.: The maximum principle. In: Progress in Nonlinear Differential Equations and their Applications, vol. 73. Birkhäuser Verlag, Basel, 2007

  24. Rusås, P.-O., Grue, J.: Solitary waves and conjugate flows in a three-layer fluid. Eur. J. Mech. B Fluids 21, 185–206 (2002)

  25. Ter-Krikorov, A.M.: Théorie exacte des ondes longues stationnaires dans un liquide hétérogène. J. Mécanique 2, 351–376 (1963)

  26. Turner, R.E.L.: Internal waves in fluids with rapidly varying density. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8, 513–573 (1981)

  27. Turner R.E.L.: A variational approach to surface solitary waves. J. Differ. Equ. 55, 401–438 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Varvaruca, E., Zarnescu, A.: Equivalence of weak formulations of the steady water waves equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 370, 1703–1719 (2012)

  29. Walsh, S.: Stratified and steady periodic water waves. SIAM J. Math. Anal. 41, 1054–1105 (2009)

  30. Walsh, S.: Steady stratified periodic gravity waves with surface tension I: local bifurcation. Discrete Contin. Dyn. Syst. Ser. A 34, 3287–3315 (2014)

  31. Walsh, S.: Steady stratified periodic gravity waves with surface tension II: global bifurcation. Discrete Contin. Dyn. Syst. Ser. A 34, 3241–3285 (2014)

  32. Wheeler M.H.: Large-amplitude solitary water waves with vorticity. SIAM J. Math. Anal. 45, 2937–2994 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wheeler M.H.: The Froude number for solitary water waves with vorticity. J. Fluid Mech. 768, 99–112 (2015)

    Article  MATH  ADS  Google Scholar 

  34. Wheeler, M.H.: Solitary water waves of large amplitude. Arch. Rational Mech. Anal. (2015). doi:10.1007/s00205-015-0877-7

  35. Yih, C.-S.: Dynamics of Nonhomogeneous Fluids. The Macmillan Co., New York, 1965

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Ming Chen.

Additional information

Communicated by Constantine Dafermos

The work of R. M. Chen was partially supported by the NSF Grant DMS-0908663 and the Central Research Development Fund No. 04.13205.30205 from University of Pittsburgh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.M., Walsh, S. Continuous Dependence on the Density for Stratified Steady Water Waves. Arch Rational Mech Anal 219, 741–792 (2016). https://doi.org/10.1007/s00205-015-0906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0906-6

Keywords

Navigation