Skip to main content
Log in

Optimal Scaling in Solids Undergoing Ductile Fracture by Crazing

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We derive optimal scaling laws for the macroscopic fracture energy of polymers failing by crazing. We assume that the effective deformation-theoretical free-energy density is additive in the first and fractional deformation-gradients, with zero growth in the former and linear growth in the latter. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. For this particular geometry, we derive optimal scaling laws for the dependence of the specific fracture energy on cross-sectional area, micromechanical parameters, opening displacement and intrinsic length of the material. In particular, the upper bound is obtained by means of a construction of the crazing type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. In: Pure and Applied Mathematics, vol. 65. Academic Press, New York, 1975

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. In: Oxford Mathematical Monographs. Oxford University Press, New York, 2000

  3. Argon A.S.: The Physics of Deformation and Fracture of Polymers. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  4. Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. Ser. A 306(1496), 557–611 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Basu S., Mahajan D.K., Vander Giessen E.: Micromechanics of the growth of a craze fibril in glassy polymers. Polymer 46(18), 7504–7518 (2005)

    Article  Google Scholar 

  6. Ben Belgacem H., Conti S., DeSimone A., Müller S.: Energy scaling of compressed elastic films. Arch. Rat. Mech. Anal. 164, 1–37 (2002)

    Article  MATH  Google Scholar 

  7. Choksi R., Kohn R.V., Otto F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201, 61–79 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Conti S.: Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53, 1448–1474 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Conti S., DeLellis C.: Some remarks on the theory of elasticity for compressible neohookean materials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2(5), 521–549 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Conti S., Ortiz M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal. 176, 103–147 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  12. Flory P.J.: Statistical Mechanics of Chain Molecules. Hanser Publishers, Munich (1989)

    Google Scholar 

  13. Fokoua L., Conti S., Ortiz M.: Optimal scaling in solids undergoing ductile fracture by void sheet formation. Arch. Rat. Mech. Anal. 212, 331–357 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fokoua L., Conti S., Ortiz M.: Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity. J. Mech. Phys. Solids 62, 295–311 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Henao D., Mora-Corral C.: Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Rat. Mech. Anal. 197, 619–655 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Heyden, S., Conti, S., Ortiz, M.: A nonlocal model of fracture by crazing in polymers. Mech. Mater. (2015). doi:10.1016/j.mechmat.2015.02.006

  17. Heyden, S., Li, B., Weinberg, K., Conti, S., Ortiz, M.: A micromechanical damage and fracture model for polymers based on fractional strain-gradient elasticity. J. Mech. Phys. Solids 74, 175–195 (2015). doi:10.1016/j.jmps.2014.08.005

  18. James R.D., Spector S.J.: The formation of filamentary voids in solids. J. Mech. Phys. Solids 39, 783–813 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Kausch, H.H. (ed.): Crazing in Polymers. Springer, Berlin, 1983

  20. Kohn R.V., Müller S.: Branching of twins near an austenite-twinned-martensite interface. Phil. Mag. A 66, 697–715 (1992)

    Article  ADS  Google Scholar 

  21. Kohn R.V., Müller S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47, 405–435 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kröner, E. (ed.): Mechanics of Generalized Continua; Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications. Springer, Berlin, 1968

  23. Lunardi, A.: Interpolation theory. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 2nd edn. Edizioni della Normale, Pisa, 2009

  24. Maugin, G.A., Metrikine, A.V.: Mechanics of generalized continua: one hundred years after the Cosserats. Advances in Mechanics and Mathematics. Springer, New York, 2010

  25. Mindlin, R.D., Hermann, G.: R.D. Mindlin and Applied Mechanics; A Collection of Studies in the Development of Applied Mechanics, Dedicated to Professor Raymond D. Mindlin by his Former Students. Pergamon Press, New York, 1974

  26. Müller S., Spector S.J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rat. Mech. Anal. 131, 1–66 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Seelig T., Vander Giessen E.: A cell model study of crazing and matrix plasticity in rubber-toughened glassy polymers. Comput. Mater. Sci. 45, 725–728 (2009)

    Article  Google Scholar 

  28. Socrate S., Boyce M.C., Lazzeri A.: A micromechanical model for multiple crazing in high impact polystyrene. Mech. Mater. 33, 155–175 (2001)

    Article  Google Scholar 

  29. Tartar L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  30. Weiner J.H.: Statistical Mechanics of Elasticity, 2nd edn. Dover Publications, Mineola (2002)

    MATH  Google Scholar 

  31. Yong Z., Liechti K.M., Ravi-Chandar K.: Direct extraction of rate-dependent traction–separation laws for polyurea/steel interfaces. Int. J. Solids Struct. 46, 31–51 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ortiz.

Additional information

Communicated by The Editors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conti, S., Ortiz, M. Optimal Scaling in Solids Undergoing Ductile Fracture by Crazing. Arch Rational Mech Anal 219, 607–636 (2016). https://doi.org/10.1007/s00205-015-0901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0901-y

Keywords

Navigation