Skip to main content

Domain Formation in Magnetic Polymer Composites: An Approach Via Stochastic Homogenization


We study the magnetic energy of magnetic polymer composite materials as the average distance between magnetic particles vanishes. We model the position of these particles in the polymeric matrix as a stochastic lattice scaled by a small parameter ɛ and the magnets as classical \({\pm 1}\) spin variables interacting via an Ising type energy. Under surface scaling of the energy we prove, in terms of Γ-convergence, that, up to subsequences, the (continuum) Γ-limit of these energies is finite on the set of Caccioppoli partitions representing the magnetic Weiss domains where it has a local integral structure. Assuming stationarity of the stochastic lattice, we can make use of ergodic theory to further show that the Γ-limit exists and that the integrand is given by an asymptotic homogenization formula which becomes deterministic if the lattice is ergodic.

This is a preview of subscription content, access via your institution.


  1. 1.

    Akcoglu U., Krengel M.A.: Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 53–67 (1981)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Alicandro R., Braides A., Cicalese M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1(1), 85–107 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Alicandro, R., Cicalese, M.: Variational analysis of the asymptotics of the XY model. Arch. Ration. Mech. Anal. 192(3), 501–36 (2009)

  4. 4.

    Alicandro, R., Cicalese, M., Gloria, A.: Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity. Arch. Ration. Mech. Anal. 200(3), 881–943 (2011)

  5. 5.

    Alicandro, R., Cicalese, M., Ponsiglione, M.: Variational equivalence between Ginzburg–Landau, XY spin systems and screw dislocation energies. Indiana Univ. Math. J. 60(1), 171–208 (2011)

  6. 6.

    Alicandro, R., Cicalese, M., Sigalotti, L.: Phase transitions in presence of surfactants: from discrete to continuum. Interfaces Free Bound. 14(1), 65–103 (2012)

  7. 7.

    Alicandro, R., Gelli, M.S.: Local and non local continuum limits of Ising type energies for spin systems. (2014, submitted)

  8. 8.

    Ambrosio L., Braides A.: Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69, 307–333 (1990)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000

  10. 10.

    Blanc, X., Le Bris, C.: Définition d’énergies d’interfaces à partir de modèles atomiques. C. R. Math. Acad. Sci. Paris 340, 535–540 (2005)

  11. 11.

    Blanc, X., Le Bris, C., Lions, P.L.: Form molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164, 341–381 (2005)

  12. 12.

    Bouchitté, G., Fonseca, I., Leoni, G., Mascarenhas, L.: A global method for relaxation in W 1,p and in SBV p . Arch. Ration. Mech. Anal. 165(3), 187–242 (2002)

  13. 13.

    Braides, A.: $$-Convergence for Beginners. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford, 2002

  14. 14.

    Braides, A., Cicalese, M., Solombrino, F.: Q-tensor continuum energies as limits of head-to-tail symmetric spin systems (2013, preprint)

  15. 15.

    Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals. Oxford University Press, Oxford, 1998

  16. 16.

    Braides A., Piatnitski A.: Homogenization of surface and length energies for spin systems. J.Funct. Anal. 264, 1296–1328 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Braides, A., Solci, M.: Interfacial energies on penrose lattices. Math. Models Methods Appl. Sci. (M3AS) 21, 1193–1210 (2011)

  18. 18.

    Caffarelli, L.A., de la Llave, R.: Planelike minimizers in periodic media. Commun. Pure Appl. Math. 54(12), 1403–1441 (2001)

  19. 19.

    Cicalese, M., DeSimone, A., Zeppieri, C.: Discrete-to-continuum limits for strain-alignment-coupled systems: magnetostrictive solids, ferroelectric crystals and nematic elastomers. Netw. Heterog. Media 4(4), 667–708 (2009)

  20. 20.

    Cicalese, M., Solombrino, F.: Frustrated ferromagnetic spin chains: a variational approach to chirality transitions (2013, preprint)

  21. 21.

    Dal Maso, G.: An Introduction to Γ-Convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston Inc., Boston, 1993

  22. 22.

    Dal Maso, G., Modica, L.: Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368, 28–42 (1986)

  23. 23.

    Doktor, P.: Approximation of domains with lipschitzian boundary. Časopis pro pěstováni matematiky 101(3), 237–255 (1976)

  24. 24.

    Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: L p Spaces. Springer, New York, 2010

  25. 25.

    Gloria, A., Penrose, M.D.: Random parking, euclidean functionals, and rubber elasticity. Commun. Math. Phys. 321(1), 1–31 (2013)

  26. 26.

    Ponsiglione M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39(2), 449–469 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Theoretical and Mathematical Physics. Springer, Berlin, 2009

  28. 28.

    Ruelle, D.: Statistical Mechanics. Rigorous Results. World Scientific, River Edge (reprint of the 1989 edition)

  29. 29.

    Schmidt T.: Strict interior approximation of sets of finite perimeter and functions of bounded variation. Proc. Am. Math. Soc. 143(5), 2069–2084 (2015)

    Article  Google Scholar 

  30. 30.

    Vollath D.: Nanoparticles-Nanocomposites Nanomaterials: An Introduction for Beginners. Wiley, New York (2013)

    Google Scholar 

  31. 31.

    Zihwei, C.L.: Extending an orthonormal rational set of vectors into an orthonormal rational basis.

Download references

Author information



Corresponding author

Correspondence to Marco Cicalese.

Additional information

Communicated by A. Braides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alicandro, R., Cicalese, M. & Ruf, M. Domain Formation in Magnetic Polymer Composites: An Approach Via Stochastic Homogenization. Arch Rational Mech Anal 218, 945–984 (2015).

Download citation


  • Voronoi Cell
  • Domain Formation
  • Discrete Energy
  • Voronoi Tessellation
  • Magnetic Polymer