Skip to main content

Study of Island Formation in Epitaxially Strained Films on Unbounded Domains

Abstract

We consider a variational model related to the formation of islands in heteroepitaxial growth on unbounded domains. We first derive the scaling regimes of the minimal energy in terms of the volume of the film and the amplitude of the crystallographic misfit. For small volumes, non-existence of minimizers is then proven. This corresponds to the experimentally observed wetting effect. On the other hand, we show the existence of minimizers for large volumes. We finally study the asymptotic behavior of the optimal shapes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press; Oxford University Press, New York, 2000

  2. 2.

    Anzellotti G., Baldo S., Percivale D.: Dimension reduction in variational problems, asymptotic development in \({\Gamma}\)-convergence and thin structures in elasticity. Asymptot. Anal. 9(1), 61–100 (1994)

    MATH  MathSciNet  Google Scholar 

  3. 3.

    Bonnetier, E., Chambolle, A.: Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62(4), 1093–1121 (2002). (Electronic)

  4. 4.

    Braides, A.: \({\Gamma}\)-convergence for beginners. Oxford Lecture Series in Mathematics and its Applications, Vol. 22. Oxford University Press, Oxford, 2002

  5. 5.

    Chambolle A., Larsen C.J.: \({C^{\infty}}\) regularity of the free boundary for a two-dimensional optimal compliance problem. Calc. Var. Partial Differ. Equ. 18(1), 77–94 (2003)

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Cianchi A., Fusco N., Maggi F., Pratelli A.: The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. (JEMS) 11(5), 1105–1139 (2009)

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Conti S.: A lower bound for a variational model for pattern formation in shape-memory alloys. Contin. Mech. Thermodyn. 17(6), 469–476 (2006)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  8. 8.

    Dal Maso G., Fonseca I., Leoni G.: Analytical validation of a continuum model for epitaxial growth with elasticity on vicinal surfaces. Arch. Ration. Mech. Anal. 212, 1037–1064 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    De Maria B., Fusco N.: Regularity properties of equilibrium configurations of epitaxially strained elastic films. Top. Mod. Regul. Theory 13, 169–204 (2012)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Fonseca I., Fusco N., Leoni G., Morini M.: Equilibrium configurations of epitaxially strained crystalling films: existence and regularity results. Arch. Ration. Mech. Anal. 186(3), 477–537 (2007)

    MATH  MathSciNet  Article  Google Scholar 

  11. 11.

    Fonseca I., Fusco N., Leoni G., Leoni G., Leoni G.: Motion of elastic thin films by anisotropic surface diffusion with curvature regularization. Arch. Ration. Mech. Anal. 205(2), 425–466 (2012)

    MATH  MathSciNet  Article  Google Scholar 

  12. 12.

    Fonseca I., Pratelli A., Zwicknagl B.: Shapes of epitaxially grown quantum dots. Arch. Ration. Mech. Anal. 214(2), 359–401 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Fusco N., Maggi F., Pratelli A.: The sharp quantitative isoperimetric inequality. Ann. Math. (2) 168(3), 941–980 (2008)

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Fusco N., Morini M.: Equilibrium configurations of epitaxially strained elastic films: second order minimality conditions and qualitative properties of solutions. Arch. Ration. Mech. Anal. 203(1), 247–327 (2012)

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Gao H., Nix W.D.: Surface roughening of heteroepitaxial thin films. Annu. Rev. Mater. Sci. 29, 173–209 (1999)

    ADS  Article  Google Scholar 

  16. 16.

    Goldman M., Novaga M.: Volume-constrained minimizers for the prescribed curvature problem in periodic media. Calc. Var. Partial Differ. Equ. 44(3–4), 297–318 (2012)

    MATH  MathSciNet  Article  Google Scholar 

  17. 17.

    Goldman, M., Novaga, M., Ruffini, B.: Existence and stability for a non-local isoperimetric model of charged liquid drops. Arch. Ration. Mech. Anal. (2014)

  18. 18.

    Goldman M., Zwicknagl B.: Scaling law and reduced models for epitaxially strained crystalline films. SIAM J. Math. Anal. 46, 1–24 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  19. 19.

    Gray, J.L., Hull, R., Floro, J.A.: Formation of one-dimensional surface grooves from pit instabilities in annealed SiG/Si (100) epitaxial films. Appl. Phys. Lett. 85(15) (2004)

  20. 20.

    Kim I., Mellet A.: Liquid drops sliding down an inclined plane. Trans. Am. Math. Soc. 366, 6119–6150 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  21. 21.

    Knüpfer H., Muratov C. B.: On an isoperimetric problem with a competing nonlocal term. II. The general case. Commun. Pure Appl. Math. 67, 1974–1994 (2014)

    MATH  Article  Google Scholar 

  22. 22.

    Knüpfer H., Muratov C.B.: On an isoperimetric problem with a competing nonlocal term I: the planar case. Commun. Pure Appl. Math. 66(7), 1129–1162 (2013)

    MATH  Article  Google Scholar 

  23. 23.

    Koch H., Leoni G., Morini M.: On optimal regularity of free boundary problems and a conjecture of De Giorgi. Commun. Pure Appl. Math. 58(8), 1051–1076 (2005)

    MATH  MathSciNet  Article  Google Scholar 

  24. 24.

    Le Dret H., Raoult A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. (9) 74(6), 549–578 (1995)

    MATH  MathSciNet  Google Scholar 

  25. 25.

    Lieb, E.H., Loss, M.: Analysis Volume 14 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, 2001

  26. 26.

    Lu J., Otto F.: Nonexistence of minimizer for Thomas–Fermi–Dirac–von Weizsacker model. Commun. Pure Appl. Math. 67, 1605–1617 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  27. 27.

    Mellet, A.: Some mathematical aspects of capillary surfaces. Review paper, 2008

  28. 28.

    Nandedkar A.S., Srinivasan G.R., Murthy C.S.: Formation and structure of misfit dislocations. Phys. Rev. B 43, 7308–7311 (1991)

    ADS  Article  Google Scholar 

  29. 29.

    Piovano P.: Evolution of elastic thin films with curvature regularization via minimizing movements. Calc. Var. Partial Differ. Equ. 49(1-2), 337–367 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  30. 30.

    Schulze T.P., Smereka P.: Kinetic monte carlo simulation of heteroepitaxial growth: wetting layers, quantum dots, capping, and nanorings. Phys. Rev. B 86, 235–313 (2012)

    Article  Google Scholar 

  31. 31.

    Spencer B.J.: Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski–Krastanov islands. Phys. Rev. B 59, 2011–2017 (1999)

    ADS  Article  Google Scholar 

  32. 32.

    Spencer B.J., Tersoff J.: Asymmetry and shape transitions of epitaxially strained islands on vicinal surfaces. Appl. Phys. Lett. 96, 073114 (2010)

    ADS  Article  Google Scholar 

  33. 33.

    Tersoff J., Tromp R.M.: Shape transition in growth of strained islands: spontaneous formation of quantum wires. Phys. Rev. Lett. 70(18), 2782–2786 (1993)

    ADS  Article  Google Scholar 

  34. 34.

    Wu J., Hirono Y., Li X., Wang Z.M., Lee J., Benamara M., Luo S., Mazur Y.I., Kim E.S., Salamo G.J.: Self-assembly of multiple stacked nanorings by vertically correlated droplet epitaxy. Adv. Funct. Mater. 24, 530–535 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Goldman.

Additional information

Communicated by I. Fonseca

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bella, P., Goldman, M. & Zwicknagl, B. Study of Island Formation in Epitaxially Strained Films on Unbounded Domains. Arch Rational Mech Anal 218, 163–217 (2015). https://doi.org/10.1007/s00205-015-0858-x

Download citation

Keywords

  • Surface Energy
  • Elastic Energy
  • Lipschitz Function
  • Corner Point
  • Contact Angle Condition