Skip to main content

An Analysis of Crystal Cleavage in the Passage from Atomistic Models to Continuum Theory

Abstract

We study the behavior of brittle atomistic models in general dimensions under uniaxial tension and investigate the system for critical fracture loads. We rigorously prove that in the discrete-to-continuum limit the minimal energy satisfies a particular cleavage law with quadratic response to small boundary displacements followed by a sharp constant cut-off beyond some critical value. Moreover, we show that the minimal energy is attained by homogeneous elastic configurations in the subcritical case and that beyond critical loading cleavage along specific crystallographic hyperplanes is energetically favorable. In particular, our results apply to mass spring models with full nearest and next-to-nearest pair interactions and provide the limiting minimal energy and minimal configurations.

This is a preview of subscription content, access via your institution.

References

  1. Alicandro R., Focardi M., Gelli M.S.: Finite-difference approximation of energies in fracture mechanics. Ann. Scuola Norm. Sup. 29, 671–709 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Ambrosio L., Fusco N., Pallara D.: Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. Braides A., Lew A., Ortiz M.: Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180, 151–182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Braides A., Gelli M.S.: Limits of discrete systems with long-range interactions. J. Convex Anal. 9, 363–399 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Braun J., Schmidt B.: On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Netw. Heterog. Media 4, 789–812 (2013)

    MathSciNet  Google Scholar 

  6. Conti S., Dolzmann G., Kirchheim B., Müller S.: Sufficient con- ditions for the validity of the Cauchy-Born rule close to SO(n). J. Eur. Math. Soc. (JEMS) 8, 515–539 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. De Giorgi E., Ambrosio L.: Un nuovo funzionale del calcolo delle variazioni. Acc. Naz. Lincei, Rend. Cl. Sci. Fis. Math. Natur. 82, 199–210 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Francfort G.A., Marigo J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Friedrich M., Schmidt B.: An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem. J. Nonlinear. Sci. 24, 145–183 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Friesecke G., Theil F.: Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass spring lattice. J. Nonlinear. Sci. 12, 445–478 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Hayes R.L., Ortiz M., Carter E.A.: Universal binding-energy relation for crystals that accounts for surface relaxation. Phys. Rev. B 69, 172104 (2004)

    Article  ADS  Google Scholar 

  13. Jarvis E.A.A., Hayes R.L., Carter E.A.: Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum. ChemPhysChem 2, 55–59 (2001)

    Article  Google Scholar 

  14. Negri M.: Finite element approximation of the Griffith’s model in fracture mechanics. Numer. Math. 95, 653–687 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nguyen O., Ortiz M.: Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior. J. Mech. Phys. Solids 50, 1727–1741 (2002)

    Article  ADS  MATH  Google Scholar 

  16. Schmidt B.: A derivation of continuum nonlinear plate theory from atomistic models. SIAM Multiscale Model. Simul. 5, 664–694 (2006)

    Article  MATH  Google Scholar 

  17. Schmidt B.: On the derivation of linear elasticity from atomistic models. Netw. Heterog. Media 4, 789–812 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Truskinovsky, L.: Fracture as phase transition. In: Contemporary Reserch in the Mechanics and Mathematics of Materials, Batra, R.C., Beatty, M.F. (eds). CIMNE, Barcelona 322–332, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schmidt.

Additional information

Communicated by C. Le Bris

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friedrich, M., Schmidt, B. An Analysis of Crystal Cleavage in the Passage from Atomistic Models to Continuum Theory. Arch Rational Mech Anal 217, 263–308 (2015). https://doi.org/10.1007/s00205-014-0833-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0833-y

Keywords

  • Triangular Lattice
  • Cell Energy
  • Intermediate Regime
  • Elastic Regime
  • Crack Geometry