## Abstract

Our starting point is a variational model in nonlinear elasticity that allows for cavitation and fracture that was introduced by Henao and Mora-Corral (Arch Rational Mech Anal 197:619–655, 2010). The total energy to minimize is the sum of the elastic energy plus the energy produced by crack and surface formation. It is a free discontinuity problem, since the crack set and the set of new surface are unknowns of the problem. The expression of the functional involves a volume integral and two surface integrals, and this fact makes the problem numerically intractable. In this paper we propose an approximation (in the sense of *Γ*-convergence) by functionals involving only volume integrals, which makes a numerical approximation by finite elements feasible. This approximation has some similarities to the Modica–Mortola approximation of the perimeter and the Ambrosio–Tortorelli approximation of the Mumford–Shah functional, but with the added difficulties typical of nonlinear elasticity, in which the deformation is assumed to be one-to-one and orientation-preserving.

### Similar content being viewed by others

## References

Ambrosio, L., Fusco, N., Pallara, D.:

*Functions of Bounded Variation and Free Discontinuity Problems*. Oxford University Press, New York, 2000Mumford D., Shah J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math.

**42**, 577–685 (1989)De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal.

**108**(3), 195–218 (1989)Griffith A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A

**221**, 163–198 (1921)Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem.

*J. Mech. Phys. Solids***46**(8), 1319–1342 (1998)Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. Ser. A

**306**, 557–611 (1982)Müller, S., Spector, S.J.: An existence theory for nonlinear elasticity that allows for cavitation.

*Arch. Rational Mech. Anal*.**131**(1), 1–66 (1995)Henao, D., Mora-Corral, C.: Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity.

*Arch. Rational Mech. Anal***197**, 619–655 (2010)Henao, D., Mora-Corral, C.: Fracture surfaces and the regularity of inverses for BV deformations.

*Arch. Rational Mech. Anal*.**201**(2), 575–629 (2011)Henao D., Mora-Corral C.: Lusin’s condition and the distributional determinant for deformations with finite energy. Adv. Calc. Var.

**5**(4), 355–409 (2012)Modica, L., Mortola, S.: Un esempio di

*Γ*^{−}-convergenza.*Boll. Un. Mat. Ital*. B (5)**14**(1), 285–299 (1977)Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal.

**98**(2), 123–142 (1987)Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via

*Γ*-convergence.*Commun. Pure Appl. Math*.**43**(8), 999–1036 (1990)Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems.

*Boll. Un. Mat. Ital. B*(7)**6**(1), 105–123 (1992)Braides, A.: Approximation of free-discontinuity problems. In:

*Lecture Notes in Mathematics*, Vol. 1694. Springer, Berlin, 1998Bourdin, B., Chambolle, A.: Implementation of an adaptive finite-element approximation of the Mumford–Shah functional.

*Numer. Math*.**85**(4), 609–646 (2000)Giacomini, A.: Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fractures.

*Calc. Var. Partial Differ. Equ*.**22**(2), 129–172 (2005)Bourdin B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interf. Free Bound.

**9**(3), 411–430 (2007)Burke, S., Ortner, C., Süli, E.: An adaptive finite element approximation of a variational model of brittle fracture.

*SIAM J. Numer. Anal*.**48**(3), 980–1012 (2010)Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture.

*J. Mech. Phys. Solids***48**(4), 797–826 (2000)Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture.

*J. Elast*.**91**(1–3), 5–148 (2008)Burke, S.: A numerical analysis of the minimisation of the Ambrosio–Tortorelli functional, with applications in brittle fracture. Ph.D. thesis, University of Oxford, 2010

Chambolle, A.: An approximation result for special functions with bounded deformation.

*J. Math. Pures Appl*. (9)**83**(7), 929–954 (2004)Focardi, M.: On the variational approximation of free-discontinuity problems in the vectorial case.

*Math. Models Methods Appl. Sci*.**11**(4), 663–684 (2001)Williams, M., Schapery, R.: Spherical flaw instability in hydrostatic tension.

*Int. J. Fract. Mech*.**1**(1), 64–71 (1965)Rice, J.R., Tracey, D.M.: On the ductile enlargement of voids in triaxial stress fields.

*J. Mech. Phys. Solids***17**, 201–217 (1969)Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media.

*J. Eng. Mater. Technol*.**99**, 2–15 (1977)Goods, S.H., Brown, L.M.: The nucleation of cavities by plastic deformation.

*Acta Metall*.**27**, 1–15 (1979)Tvergaard, V.: Material failure by void growth and coalescence. In:

*Advances in Applied Mechanics*, pp. 83–151. Academic Press, San Diego, 1990Gent, A.N., Wang, C.: Fracture mechanics and cavitation in rubber-like solids.

*J. Mater. Sci*.**26**(12), 3392–3395 (1991)Petrinic, N., Curiel Sosa, J.L., Siviour, C.R., Elliott, B.C.F.: Improved predictive modelling of strain localisation and ductile fracture in a Ti-6Al-4V alloy subjected to impact loading.

*J. Phys. IV***134**, 147–155 (2006)Henao, D., Mora-Corral, C., Xu, X.: A numerical study of void coalescence and fracture in nonlinear elasticity (2014, in preparation)

Braides, A., Chambolle, A., Solci, M.: A relaxation result for energies defined on pairs set-function and applications.

*ESAIM Control Optim. Calc. Var*.**13**(4), 717–734 (2007)Mora-Corral, C.: Approximation by piecewise affine homeomorphisms of Sobolev homeomorphisms that are smooth outside a point.

*Houston J. Math*.**35**(2), 515–539 (2009)Bellido, J.C., Mora-Corral, C.: Approximation of Hölder continuous homeomorphisms by piecewise affine homeomorphisms.

*Houston J. Math*.**37**(2), 449–500 (2011)Iwaniec T., Kovalev L.V., Onninen J.: Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Rational Mech. Anal.

**201**(3), 1047–1067 (2011)Daneri, S., Pratelli, A.: Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms.

*Ann. Inst. H. Poincaré Anal. Non Linéaire***31**(3), 567–589 (2014)Mora-Corral C., Pratelli A.: Approximation of piecewise affine homeomorphisms by diffeomorphisms. J. Geom. Anal.

**24**(3), 1398–1424 (2014)Cortesani G.: Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII (N.S.)

**43**, 27–49 (1997)Cortesani, G., Toader, R.: A density result in SBV with respect to non-isotropic energies.

*Nonlinear Anal*.**38**(5), 585–604 (1999)Federer, H.:

*Geometric measure theory*. Springer, New York, 1969Ziemer, W.P.:

*Weakly differentiable functions*. Springer, New York, 1989Conti, S., De Lellis, C.: Some remarks on the theory of elasticity for compressible Neohookean materials.

*Ann. Sc. Norm. Super. Pisa Cl. Sci*. (5)**2**(3), 521–549 (2003)Sivaloganathan, J., Spector, S.J.: On the existence of minimizers with prescribed singular points in nonlinear elasticity.

*J. Elasticity***59**(1–3), 83–113 (2000)Ambrosio, L.: On the lower semicontinuity of quasiconvex integrals in SBV(

*Ω*,**R**^{k}).*Nonlinear Anal*.**23**(3), 405–425 (1994)Ambrosio, L.: A compactness theorem for a new class of functions of bounded variation.

*Boll. Un. Mat. Ital. B*(7)**3**(4), 857–881 (1989)Ambrosio, L.: Variational problems in SBV and image segmentation.

*Acta Appl. Math*.**17**(1), 1–40 (1989)Giaquinta, M., Modica, G., Soucek, J.:

*Cartesian Currents in the Calculus of Variations. I*. Springer, Berlin, 1998Ambrosio L.: A new proof of the SBV compactness theorem. Calc. Var. Partial Differ. Equ.

**3**(1), 127–137 (1995)Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal.

**63**, 337–403 (1977)Müller S., Tang Q., Yan B.S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. H. Poincaré Anal. Non Linéaire

**11**(2), 217–243 (1994)Dacorogna, B.: Direct methods in the calculus of variations. In:

*Applied Mathematical Sciences*, Vol. 78, 2nd edn. Springer, New York, 2008Ball J.M., Currie J.C., Olver P.J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal.

**41**(2), 135–174 (1981)Braides, A.: A handbook of

*Γ*-convergence.*Handbook of Differential Equations: Stationary Partial Differential Equations*, Vol. 3, pp. 101–213 (Eds. M. Chipot and P. Quittner) North-Holland, Amsterdam, 2006Alvarado, R., Brigham, D., Maz’ya, V., Mitrea, M., Ziadé, E.: On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf–Oleinik boundary point principle.

*J. Math. Sci. (N. Y.)***176**(3), 281–360 (2011)de Pascale, L.: The Morse–Sard theorem in Sobolev spaces.

*Indiana Univ. Math. J*.**50**(3), 1371–1386 (2001)Alberti, G.: Variational models for phase transitions, an approach via

*Γ*-convergence. In:*Calculus of Variations and Partial Differential Equations*(Pisa, 1996), pp. 95–114. Springer, Berlin, 2000Henao D., Serfaty S.: Energy estimates and cavity interaction for a critical-exponent cavitation model. Comm. Pure Appl. Math.

**66**, 1028–1101 (2013)

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

*Communicated by* A. Braides

## Rights and permissions

## About this article

### Cite this article

Henao, D., Mora-Corral, C. & Xu, X.
*Γ*-convergence Approximation of Fracture and Cavitation in Nonlinear Elasticity.
*Arch Rational Mech Anal* **216**, 813–879 (2015). https://doi.org/10.1007/s00205-014-0820-3

Received:

Accepted:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s00205-014-0820-3