Archive for Rational Mechanics and Analysis

, Volume 216, Issue 3, pp 813–879 | Cite as

Γ-convergence Approximation of Fracture and Cavitation in Nonlinear Elasticity

Article

Abstract

Our starting point is a variational model in nonlinear elasticity that allows for cavitation and fracture that was introduced by Henao and Mora-Corral (Arch Rational Mech Anal 197:619–655, 2010). The total energy to minimize is the sum of the elastic energy plus the energy produced by crack and surface formation. It is a free discontinuity problem, since the crack set and the set of new surface are unknowns of the problem. The expression of the functional involves a volume integral and two surface integrals, and this fact makes the problem numerically intractable. In this paper we propose an approximation (in the sense of Γ-convergence) by functionals involving only volume integrals, which makes a numerical approximation by finite elements feasible. This approximation has some similarities to the Modica–Mortola approximation of the perimeter and the Ambrosio–Tortorelli approximation of the Mumford–Shah functional, but with the added difficulties typical of nonlinear elasticity, in which the deformation is assumed to be one-to-one and orientation-preserving.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York, 2000Google Scholar
  2. 2.
    Mumford D., Shah J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108(3), 195–218 (1989)Google Scholar
  4. 4.
    Griffith A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198 (1921)CrossRefADSGoogle Scholar
  5. 5.
    Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)Google Scholar
  6. 6.
    Ball J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. Ser. A 306, 557–611 (1982)CrossRefADSMATHGoogle Scholar
  7. 7.
    Müller, S., Spector, S.J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal. 131(1), 1–66 (1995)Google Scholar
  8. 8.
    Henao, D., Mora-Corral, C.: Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Rational Mech. Anal 197, 619–655 (2010)Google Scholar
  9. 9.
    Henao, D., Mora-Corral, C.: Fracture surfaces and the regularity of inverses for BV deformations. Arch. Rational Mech. Anal. 201(2), 575–629 (2011)Google Scholar
  10. 10.
    Henao D., Mora-Corral C.: Lusin’s condition and the distributional determinant for deformations with finite energy. Adv. Calc. Var. 5(4), 355–409 (2012)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Modica, L., Mortola, S.: Un esempio di Γ -convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285–299 (1977)Google Scholar
  12. 12.
    Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98(2), 123–142 (1987)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)Google Scholar
  14. 14.
    Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6(1), 105–123 (1992)Google Scholar
  15. 15.
    Braides, A.: Approximation of free-discontinuity problems. In: Lecture Notes in Mathematics, Vol. 1694. Springer, Berlin, 1998Google Scholar
  16. 16.
    Bourdin, B., Chambolle, A.: Implementation of an adaptive finite-element approximation of the Mumford–Shah functional. Numer. Math. 85(4), 609–646 (2000)Google Scholar
  17. 17.
    Giacomini, A.: Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Partial Differ. Equ. 22(2), 129–172 (2005)Google Scholar
  18. 18.
    Bourdin B.: Numerical implementation of the variational formulation for quasi-static brittle fracture. Interf. Free Bound. 9(3), 411–430 (2007)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Burke, S., Ortner, C., Süli, E.: An adaptive finite element approximation of a variational model of brittle fracture. SIAM J. Numer. Anal. 48(3), 980–1012 (2010)Google Scholar
  20. 20.
    Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)Google Scholar
  21. 21.
    Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148 (2008)Google Scholar
  22. 22.
    Burke, S.: A numerical analysis of the minimisation of the Ambrosio–Tortorelli functional, with applications in brittle fracture. Ph.D. thesis, University of Oxford, 2010Google Scholar
  23. 23.
    Chambolle, A.: An approximation result for special functions with bounded deformation. J. Math. Pures Appl. (9) 83(7), 929–954 (2004)Google Scholar
  24. 24.
    Focardi, M.: On the variational approximation of free-discontinuity problems in the vectorial case. Math. Models Methods Appl. Sci. 11(4), 663–684 (2001)Google Scholar
  25. 25.
    Williams, M., Schapery, R.: Spherical flaw instability in hydrostatic tension. Int. J. Fract. Mech. 1(1), 64–71 (1965)Google Scholar
  26. 26.
    Rice, J.R., Tracey, D.M.: On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17, 201–217 (1969)Google Scholar
  27. 27.
    Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)Google Scholar
  28. 28.
    Goods, S.H., Brown, L.M.: The nucleation of cavities by plastic deformation. Acta Metall. 27, 1–15 (1979)Google Scholar
  29. 29.
    Tvergaard, V.: Material failure by void growth and coalescence. In: Advances in Applied Mechanics, pp. 83–151. Academic Press, San Diego, 1990Google Scholar
  30. 30.
    Gent, A.N., Wang, C.: Fracture mechanics and cavitation in rubber-like solids. J. Mater. Sci. 26(12), 3392–3395 (1991)Google Scholar
  31. 31.
    Petrinic, N., Curiel Sosa, J.L., Siviour, C.R., Elliott, B.C.F.: Improved predictive modelling of strain localisation and ductile fracture in a Ti-6Al-4V alloy subjected to impact loading. J. Phys. IV 134, 147–155 (2006)Google Scholar
  32. 32.
    Henao, D., Mora-Corral, C., Xu, X.: A numerical study of void coalescence and fracture in nonlinear elasticity (2014, in preparation)Google Scholar
  33. 33.
    Braides, A., Chambolle, A., Solci, M.: A relaxation result for energies defined on pairs set-function and applications. ESAIM Control Optim. Calc. Var. 13(4), 717–734 (2007)Google Scholar
  34. 34.
    Mora-Corral, C.: Approximation by piecewise affine homeomorphisms of Sobolev homeomorphisms that are smooth outside a point. Houston J. Math. 35(2), 515–539 (2009)Google Scholar
  35. 35.
    Bellido, J.C., Mora-Corral, C.: Approximation of Hölder continuous homeomorphisms by piecewise affine homeomorphisms. Houston J. Math. 37(2), 449–500 (2011)Google Scholar
  36. 36.
    Iwaniec T., Kovalev L.V., Onninen J.: Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Rational Mech. Anal. 201(3), 1047–1067 (2011)CrossRefADSMATHMathSciNetGoogle Scholar
  37. 37.
    Daneri, S., Pratelli, A.: Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(3), 567–589 (2014)Google Scholar
  38. 38.
    Mora-Corral C., Pratelli A.: Approximation of piecewise affine homeomorphisms by diffeomorphisms. J. Geom. Anal. 24(3), 1398–1424 (2014)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Cortesani G.: Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII (N.S.) 43, 27–49 (1997)MATHMathSciNetGoogle Scholar
  40. 40.
    Cortesani, G., Toader, R.: A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38(5), 585–604 (1999)Google Scholar
  41. 41.
    Federer, H.: Geometric measure theory. Springer, New York, 1969Google Scholar
  42. 42.
    Ziemer, W.P.: Weakly differentiable functions. Springer, New York, 1989Google Scholar
  43. 43.
    Conti, S., De Lellis, C.: Some remarks on the theory of elasticity for compressible Neohookean materials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(3), 521–549 (2003)Google Scholar
  44. 44.
    Sivaloganathan, J., Spector, S.J.: On the existence of minimizers with prescribed singular points in nonlinear elasticity. J. Elasticity 59(1–3), 83–113 (2000)Google Scholar
  45. 45.
    Ambrosio, L.: On the lower semicontinuity of quasiconvex integrals in SBV(Ω, R k). Nonlinear Anal. 23(3), 405–425 (1994)Google Scholar
  46. 46.
    Ambrosio, L.: A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B (7) 3(4), 857–881 (1989)Google Scholar
  47. 47.
    Ambrosio, L.: Variational problems in SBV and image segmentation. Acta Appl. Math. 17(1), 1–40 (1989)Google Scholar
  48. 48.
    Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations. I. Springer, Berlin, 1998Google Scholar
  49. 49.
    Ambrosio L.: A new proof of the SBV compactness theorem. Calc. Var. Partial Differ. Equ. 3(1), 127–137 (1995)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337–403 (1977)CrossRefMATHGoogle Scholar
  51. 51.
    Müller S., Tang Q., Yan B.S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. H. Poincaré Anal. Non Linéaire 11(2), 217–243 (1994)MATHGoogle Scholar
  52. 52.
    Dacorogna, B.: Direct methods in the calculus of variations. In: Applied Mathematical Sciences, Vol. 78, 2nd edn. Springer, New York, 2008Google Scholar
  53. 53.
    Ball J.M., Currie J.C., Olver P.J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41(2), 135–174 (1981)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Braides, A.: A handbook of Γ-convergence. Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3, pp. 101–213 (Eds. M. Chipot and P. Quittner) North-Holland, Amsterdam, 2006Google Scholar
  55. 55.
    Alvarado, R., Brigham, D., Maz’ya, V., Mitrea, M., Ziadé, E.: On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf–Oleinik boundary point principle. J. Math. Sci. (N. Y.) 176(3), 281–360 (2011)Google Scholar
  56. 56.
    de Pascale, L.: The Morse–Sard theorem in Sobolev spaces. Indiana Univ. Math. J.50(3), 1371–1386 (2001)Google Scholar
  57. 57.
    Alberti, G.: Variational models for phase transitions, an approach via Γ-convergence. In: Calculus of Variations and Partial Differential Equations (Pisa, 1996), pp. 95–114. Springer, Berlin, 2000Google Scholar
  58. 58.
    Henao D., Serfaty S.: Energy estimates and cavity interaction for a critical-exponent cavitation model. Comm. Pure Appl. Math. 66, 1028–1101 (2013)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of MathematicsPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Department of Mathematics, Faculty of SciencesUniversidad Autónoma de MadridMadridSpain
  3. 3.LSEC, Institute of Computational Mathematics and Scientific/Engineering ComputingNCMIS, Chinese Academy of SciencesBeijingChina

Personalised recommendations