Skip to main content
Log in

Localized Concentration of Semi-Classical States for Nonlinear Dirac Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The present paper studies concentration phenomena of the semiclassical approximation of a massive Dirac equation with general nonlinear self-coupling:

$$\begin{array}{ll}-i \hbar \alpha \cdot \nabla w+a \beta w + V (x) w = g (|w|) w.\end{array}$$

Compared with some existing issues, the most interesting results obtained here are twofold: the solutions concentrating around local minima of the external potential; and the nonlinearities assumed to be either super-linear or asymptotically linear at the infinity. As a consequence one sees that, if there are k bounded domains \({\Lambda_j \subset \mathbb{R}^3}\) such that \({-a < \min_{\Lambda_j} V=V(x_j) < \min_{\partial \Lambda_j}V}\) , \({x_j\in\Lambda_j}\) , then the k-families of solutions \({w_\hbar^j}\) concentrate around x j as \({\hbar\to 0}\) , respectively. The proof relies on variational arguments: the solutions are found as critical points of an energy functional. The Dirac operator has a continuous spectrum which is not bounded from below and above, hence the energy functional is strongly indefinite. A penalization technique is developed here to obtain the desired solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann N.: A nonlinear superposition principle and multibump solution of periodic Schrödinger equations. J. Funct. Anal. 234, 423–443 (2006)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti A., Badiale M., Cignolani S.: Semi-classical states of nonlinear Shrödinger equations. Arch. Rational Mech. Anal. 140, 285–300 (1997)

    Article  MATH  Google Scholar 

  3. Ambrosetti A., Felli V., Malchiodi A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7, 117–144 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Byeon J., Jeanjean L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Rational Mech. Anal. 185(2), 185–200 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Byeon J., Wang Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 165(4), 295–316 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Dautray R., Lions J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1990)

    Book  Google Scholar 

  7. Del Pino M., Felmer P.: Local mountain passes for semilinear ellipitc problems in unbounded domains. Calc. Var. Partial Differential Equations 4, 121–137 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Del Pino, M., Felmer, P.: Multi-peak bound states for nonlinear Schrödinger equations, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 15. No. 2. Elsevier, Masson, pp. 127–149, (1998)

  9. Ding Y.H.: Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., vol. 7. World Scientific Publ, Singapore (2007)

    Google Scholar 

  10. Ding Y.H.: Semi-classical ground states concentrating on the nonlinear potentical for a Dirac equation. J. Differ. Equ. 249, 1015–1034 (2010)

    Article  ADS  MATH  Google Scholar 

  11. Ding, Y.H., Lee, C., Ruf, B.: On semiclassical states of a nonlinear Dirac equation. Proc. R. Soc. Edinburgh Sect. A Math. 143.04, 765–790 (2013)

  12. Ding Y.H., Liu Xiaoying: Semi-classical limits of ground states of a nonlinear Dirac equation. J. Differ. Equ. 252, 4962–4987 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Ding Y.H., Ruf B.: Existence and concentration of semi-classical solutions for Dirac equations with critical nonlinearities. SIAM J. Math. Anal. 44(6), 3755–3785 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ding Y.H., Wei J.C.: Stationary states of nonlinear Dirac equations with general potentials. Rev. Math. Phys. 20, 1007–1032 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ding Y.H., Wei J.C., Xu T.: Existence and concentration of semi-classical solutions for a nonlinear Maxwell–Dirac system. J. Math. Phys. 54(06), 061505 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ding Y.H., Xu T.: On semi-classical limits of ground states of a nonlinear Maxwell–Dirac system. Calc. Var. Partial Differ. Equ. 51(1), 17–44 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ding Y.H., Xu T.: On the concentration of semi-classical states for a nonlinear Dirac–Klein–Gordon system. J. Differ. Equ. 256, 1264–1294 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Esteban M.J., Séré E.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171, 323–350 (1995)

    Article  ADS  MATH  Google Scholar 

  19. Finkelstein R., LeLevier R., Ruderman M.: Nonlinear spinor fields. Phys. Rev. 83(2), 326–332 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Finkelstein R., Fronsdal C., Kaus P.: Nonlinear spinor field. Phys. Rev. 103(5), 1571–1579 (1956)

    Article  ADS  MATH  Google Scholar 

  21. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    Google Scholar 

  23. Ivanenko D.D.: Notes to the theory of interaction via particles. Zh.Éksp. Teor. Fiz. 8, 260–266 (1938)

    MATH  Google Scholar 

  24. Jeanjean L., Tanaka K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differ. Equ. 21(3), 287–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations: the locally compact case, Part II. AIP Anal. non linéaire 1, 223–283

  26. Miguel R., Hugo T.: Solutions with multiple spike patterns for an elliptic system. Calc. Var. Partial Differ. Equ. 31(1), 1–25 (2008)

    MATH  Google Scholar 

  27. Miguel R., Yang J.F.: Spike-layered solutions for an elliptic system with Neumann boundary conditions. Trans. Am. Math. Soc. 357, 3265–3284 (2005)

    Article  MATH  Google Scholar 

  28. Oh Y.G.: Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V) a . Commun. Partial Differ. Equ. 13(12), 1499–1519 (1988)

    Article  MATH  Google Scholar 

  29. Oh Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131(2), 223–253 (1990)

    Article  ADS  MATH  Google Scholar 

  30. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Amer. Math. Soc., Providence, 1986

  31. Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Stein E.M.: Singular integrals and differentiability properties of functions, vol. 2. Princeton University Press, Princeton (1970)

    Google Scholar 

  33. Simon B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7, 447–526 (1982)

    Article  MATH  Google Scholar 

  34. Wang X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153(2), 229–244 (1993)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xu.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Xu, T. Localized Concentration of Semi-Classical States for Nonlinear Dirac Equations. Arch Rational Mech Anal 216, 415–447 (2015). https://doi.org/10.1007/s00205-014-0811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0811-4

Keywords

Navigation