Skip to main content
Log in

Trace Formula for Linear Hamiltonian Systems with its Applications to Elliptic Lagrangian Solutions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In the present paper, we build up trace formulas for both the linear Hamiltonian systems and Sturm–Liouville systems. The formula connects the monodromy matrix of a symmetric periodic orbit with the infinite sum of eigenvalues of the Hessian of the action functional. A natural application is to study the non-degeneracy of linear Hamiltonian systems. Precisely, by the trace formula, we can give an estimation for the upper bound such that the non-degeneracy preserves. Moreover, we could estimate the relative Morse index by the trace formula. Consequently, a series of new stability criteria for the symmetric periodic orbits is given. As a concrete application, the trace formula is used to study the linear stability of elliptic Lagrangian solutions of the classical planar three-body problem, which depends on the mass parameter \({\beta \in [0,9]}\) and the eccentricity \({e \in [0,1)}\) . Based on the trace formula, we estimate the stable region and hyperbolic region of the elliptic Lagrangian solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M. F., Patodi, V. K., Singer, I. M.: Spectral asymmetry and Riemannian geometry. III. Math. Proc. Cambridge Philos. Soc. 79(1), 71–99 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Barutello, V., Jadanza, R. D., Portaluri, A.: Morse index and linear stability of the Lagrangian circular orbit in a three-body-type problem via index theory (2014). arXiv:1406.3519v1

  3. Bolotin, S. V.: On the Hill determinant of a periodic orbit. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. (3), 30–34, 114 (1988)

  4. Bolotin, S. V., Treschev, D. V.: Hill’s formula. Russian Math. Surv., 65(2), 191–257 (2010)

    Article  ADS  MATH  Google Scholar 

  5. Chen, K.: Existence and minimizing properties of retrograd orbits in three-body problem with various choice of mass. Ann. Math. 167(2), 325–348 (2008)

    Article  MATH  Google Scholar 

  6. Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three body problem in the case of equal masses. Ann. Math. 152(3), 881–901 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Danby, J.M.A.: The stability of the triangular Lagrangian point in the general problem of three bodies. Astron. J. 69, 294–296 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  8. Davletshin, M.: Hill formula for g-periodic trajectories of Lagrangian systems. Trudy MMO 74(1) (2013). Trans. Moscow Math. Soc. Tom 74, 65–96 (2013)

  9. Denk, R.: On Hilbert–Schmidt operators and determinants corresponding to periodic ODE systems. Differential and integral operators (Regensburg, 1995), pp. 57–71. Oper. Theory Adv. Appl. 102. Birkhäuser, Basel (1998)

  10. Ferrario, D.L., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155, 305–362 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Gascheau, M.: Examen d’une classe d’équations différentielles et application à un cas particulier du problème des trois corps. Comptes Rend. 16, 393–394 (1843)

    Google Scholar 

  12. Hill, G.W.: On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. Acta Math. 8(1), 1–36 (1886)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hu, X., Long, Y., Sun, S.: Linear stability of elliptic Lagrangian solutions of the classical planer three-body problem via index theory. Arch. Ration. Mech. Anal. 213(3), 993–1045 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hu, X., Sun, S.: Index and stability of symmetric periodic orbits in Hamiltonian systems with its application to figure-eight orbit. Commun. Math. Phys. 290(2), 737–777 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Hu, X., Sun, S.: Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem. Adv. Math. 223(1), 98–119 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu, X., Wang, P.: Conditional Fredholm determinant of S-periodic orbits in Hamiltonian systems. J. Funct. Anal. 261, 3247–3278 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hu X., Wang P.: Hill-type formula and Krein-type trace formula for S-periodic solutions in ODEs (Preprint 2014)

  18. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1984)

    MATH  Google Scholar 

  19. Krein, M.G.: On tests for the stable boundedness of solutions of periodic canonical systems. PrikL Mat. Mekh. 19(6), 641–680 (1955)

    MathSciNet  Google Scholar 

  20. Krein, M. G.: Foundation of the theory of \({\lambda}\) -zones of stability of a canonical systems of linear differential equations with periodic coefficients. In: Memoriam: A. A. Andronov, Izdat.Akad.Nauk SSSR, Moscow, pp. 413–498 (1955)

  21. Lagrange, J. L.: Essai sur le problème des trois corps. Chapitre II. Œuvres Tome 6, pp. 272–292. Gauthier-Villars, Paris (1772)

  22. Long, Y.: Bott formula of the Maslov-type index theory. Pacific J. Math. 187(1), 113–149 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Long, Y.: Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics. Adv. Math. 154(1), 76–131 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Long, Y.: Index theory for symplectic paths with applications. Progress in Math., vol. 207. Birkhäuser, Basel (2002)

  25. Martínez, R., Samà, A., Simó, C.: Stability diagram for 4D linear periodic systems with applications to homographic solutions. J. Differ. Equ. 226(2), 619–651 (2006)

    Article  ADS  MATH  Google Scholar 

  26. Martínez, R., Samà, A., Simó, C.: Analysis of the stability of a family of singular-limit linear periodic systems in \({{\mathbb{R}}^4}\). Appl. J. Differ. Equ. 226(2), 652–686 (2006)

    Article  ADS  MATH  Google Scholar 

  27. Meyer, K.R., Schmidt, D.S.: Elliptic relative equilibria in the N-body problem. J. Differ. Equ. 214(2), 256–298 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Ou, Y.: Hyperbolicity of elliptic Lagrangian orbits in the planar three body problem. Sci. China Math. 57(7), 1539–1544 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Poincaré, A.: Sur les déterminants d’ordre infini. Bull. Soc. math. France 14, 77–90 (1886)

    MATH  MathSciNet  Google Scholar 

  30. Reed, M., Simon, B.: Methods of modern mathematical phisics, IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1978)

  31. Roberts, G.E.: Linear stability of the elliptic Lagrangian triangle solutions in the three-body problem. J. Differ. Equ. 182(1), 191–218 (2002)

    Article  ADS  MATH  Google Scholar 

  32. Routh, E.J.: On Laplace’s three particles with a supplement on the stability or their motion. Proc. London Math. Soc. 6, 86–97 (1875)

    ADS  MATH  MathSciNet  Google Scholar 

  33. Simon, B.: Trace ideals and their applications. 2nd edn. Mathematical Surveys and Monographs, vol. 120. American Mathematical Society, Providence (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijun Hu.

Additional information

Communicated by P. Rabinowitz

X. Hu was partially supported by NSFC, NCET. Y. Ou was partially supported by NSFC (No.11131004). P. Wang was partially supported by NSFC (No.11101240, No.11471189) and Excellent Young Scientist Foundation of Shandong Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Ou, Y. & Wang, P. Trace Formula for Linear Hamiltonian Systems with its Applications to Elliptic Lagrangian Solutions. Arch Rational Mech Anal 216, 313–357 (2015). https://doi.org/10.1007/s00205-014-0810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0810-5

Keywords

Navigation