Abstract
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
Similar content being viewed by others
References
Aldana, M., Larralde, H., Vásquez, B.: On the emergence of collective order in swarming systems: a recent debate. Int. J. Mod. Phys. B 23(18), 3459–3483 (2009)
Bertin, E., Droz, M., Grégoire, G.: Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis. J. Phys. A Math. Theor. 42, 445001 (2009)
Bolley, F., Cañizo, J.A., Carrillo, J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 3(25), 339–343 (2012)
Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J. Math. Anal. 42, 218–236 (2010)
Chaté, H., Ginelli, F., Grégoire, G., Raynaud, F.: Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77(4), 046113 (2008)
Chuang, Y.-L., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Phys. D 232(1), 33–47 (2007)
Constantin, P., Kevrekidis, I.G., Titi, E.S.: Asymptotic states of a Smoluchowski equation. Arch. Ration. Mech. Anal. 174(3), 365–384 (2004)
Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)
Degond, P.: Macroscopic limits of the Boltzmann equation: a review. Modeling and Computational Methods for Kinetic Equations, Modeling and Simulation in Science, Engineering and Technology (Eds. Degond P., Pareschi L. and Russo G.) Birkhäuser, Boston, 3–57, 2004
Degond, P., Frouvelle, A., Liu, J.-G.: Macroscopic limits and phase transition in a system of self-propelled particles. J. Nonlinear Sci. 23, 427–456 (2013)
Degond, P., Liu, J.-G., Motsch, S., Panferov, V.: Hydrodynamic models of self-organized dynamics: derivation and existence theory. Methods Appl. Anal. 20, 089–114 (2013)
Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Mod. Methods Appl. Sci. 18, 1193–1215 (2008)
Degond, P., Motsch, S.: A macroscopic model for a system of swarming agents using curvature control. J. Stat. Phys. 143(4), 685–714 (2011)
Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics, Volume 73 of International Series of Monographs on Physics. Oxford University Press, Oxford, 1999
Fatkullin, I., Slastikov, V.: Critical points of the Onsager functional on a sphere. Nonlinearity 18, 2565–2580 (2005)
Frouvelle, A.: A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters. Math. Mod. Methods Appl. Sci. 22(7), 1250011 (2012). (40 p.)
Frouvelle, A., Liu, J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44(2), 791–826 (2012)
Giacomin, G., Pakdaman, K., Pellegrin, X.: Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25(5), 1247–1273 (2012)
Goldenfeld, N.: Lectures on Phase Transition and the Renormalization Group. Sarat Book House, India (2005)
Ha, S.-Y., Liu, J.-G.: A simple proof of the Cucker–Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7(2), 297–325 (2009)
Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Rel. Mod. 1(3), 415–435 (2008)
Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin, 1995. (Reprint of the 1980 edition)
Maier, W., Saupe, A.: Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes. Z. Naturforsch. 13, 564–566 (1958)
Onsager, L.: The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51(Molecular Interaction), 627–659 (1949)
Sznitman, A.-S.: Topics in propagation of chaos. \’Ecole d’Été de Probabilités de Saint-Flour XIX—1989, Vol. 1464 of Lecture Notes in Mathematics. Springer, Berlin, 165–251, 1991
Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces, Vol 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Heidelberg, 2007
Toner, J., Tu, Y., Ramaswamy, S.: Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005)
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)
Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)
Yates, C.A., Erban, R., Escudero, C., Couzin, I.D., Buhl, J., Kevrekidis, I.G., Maini, P.K., Sumpter, D.J.T.: Inherent noise can facilitate coherence in collective swarm motion. Proc. Natl. Acad. Sci. 106(14), 5464–5469 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by W. E
Rights and permissions
About this article
Cite this article
Degond, P., Frouvelle, A. & Liu, JG. Phase Transitions, Hysteresis, and Hyperbolicity for Self-Organized Alignment Dynamics. Arch Rational Mech Anal 216, 63–115 (2015). https://doi.org/10.1007/s00205-014-0800-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-014-0800-7