Skip to main content
Log in

Phase Transitions, Hysteresis, and Hyperbolicity for Self-Organized Alignment Dynamics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldana, M., Larralde, H., Vásquez, B.: On the emergence of collective order in swarming systems: a recent debate. Int. J. Mod. Phys. B 23(18), 3459–3483 (2009)

    Article  Google Scholar 

  2. Bertin, E., Droz, M., Grégoire, G.: Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis. J. Phys. A Math. Theor. 42, 445001 (2009)

    Article  ADS  Google Scholar 

  3. Bolley, F., Cañizo, J.A., Carrillo, J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 3(25), 339–343 (2012)

    Article  Google Scholar 

  4. Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J. Math. Anal. 42, 218–236 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chaté, H., Ginelli, F., Grégoire, G., Raynaud, F.: Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77(4), 046113 (2008)

    Article  ADS  Google Scholar 

  6. Chuang, Y.-L., D’Orsogna, M.R., Marthaler, D., Bertozzi, A.L., Chayes, L.S.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Phys. D 232(1), 33–47 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Constantin, P., Kevrekidis, I.G., Titi, E.S.: Asymptotic states of a Smoluchowski equation. Arch. Ration. Mech. Anal. 174(3), 365–384 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  9. Degond, P.: Macroscopic limits of the Boltzmann equation: a review. Modeling and Computational Methods for Kinetic Equations, Modeling and Simulation in Science, Engineering and Technology (Eds. Degond P., Pareschi L. and Russo G.) Birkhäuser, Boston, 3–57, 2004

  10. Degond, P., Frouvelle, A., Liu, J.-G.: Macroscopic limits and phase transition in a system of self-propelled particles. J. Nonlinear Sci. 23, 427–456 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Degond, P., Liu, J.-G., Motsch, S., Panferov, V.: Hydrodynamic models of self-organized dynamics: derivation and existence theory. Methods Appl. Anal. 20, 089–114 (2013)

    MathSciNet  Google Scholar 

  12. Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Mod. Methods Appl. Sci. 18, 1193–1215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Degond, P., Motsch, S.: A macroscopic model for a system of swarming agents using curvature control. J. Stat. Phys. 143(4), 685–714 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics, Volume 73 of International Series of Monographs on Physics. Oxford University Press, Oxford, 1999

  15. Fatkullin, I., Slastikov, V.: Critical points of the Onsager functional on a sphere. Nonlinearity 18, 2565–2580 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Frouvelle, A.: A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters. Math. Mod. Methods Appl. Sci. 22(7), 1250011 (2012). (40 p.)

  17. Frouvelle, A., Liu, J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44(2), 791–826 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Giacomin, G., Pakdaman, K., Pellegrin, X.: Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25(5), 1247–1273 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Goldenfeld, N.: Lectures on Phase Transition and the Renormalization Group. Sarat Book House, India (2005)

    Google Scholar 

  20. Ha, S.-Y., Liu, J.-G.: A simple proof of the Cucker–Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7(2), 297–325 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Rel. Mod. 1(3), 415–435 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin, 1995. (Reprint of the 1980 edition)

  23. Maier, W., Saupe, A.: Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes. Z. Naturforsch. 13, 564–566 (1958)

    ADS  Google Scholar 

  24. Onsager, L.: The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51(Molecular Interaction), 627–659 (1949)

  25. Sznitman, A.-S.: Topics in propagation of chaos. \’Ecole d’Été de Probabilités de Saint-Flour XIX—1989, Vol. 1464 of Lecture Notes in Mathematics. Springer, Berlin, 165–251, 1991

  26. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces, Vol 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Heidelberg, 2007

  27. Toner, J., Tu, Y., Ramaswamy, S.: Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  ADS  Google Scholar 

  29. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)

    Article  ADS  Google Scholar 

  30. Yates, C.A., Erban, R., Escudero, C., Couzin, I.D., Buhl, J., Kevrekidis, I.G., Maini, P.K., Sumpter, D.J.T.: Inherent noise can facilitate coherence in collective swarm motion. Proc. Natl. Acad. Sci. 106(14), 5464–5469 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Degond.

Additional information

Communicated by W. E

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degond, P., Frouvelle, A. & Liu, JG. Phase Transitions, Hysteresis, and Hyperbolicity for Self-Organized Alignment Dynamics. Arch Rational Mech Anal 216, 63–115 (2015). https://doi.org/10.1007/s00205-014-0800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0800-7

Keywords

Navigation