Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions

  • 545 Accesses

  • 30 Citations


A degenerate nonlinear nonlocal evolution equation is considered; it can be understood as a porous medium equation whose pressure law is nonlinear and nonlocal. We show the existence of sign-changing weak solutions to the corresponding Cauchy problem. Moreover, we construct explicit compactly supported self-similar solutions which generalize Barenblatt profiles—the well-known solutions of the classical porous medium equation.

This is a preview of subscription content, log in to check access.


  1. 1.

    Alikakos N.D.: An application of the invariance principle to reaction-diffusion equations. J. Differ. Equ. 33, 201–225 (1979)

  2. 2.

    Barles G., Chasseigne E., Imbert C.: On the Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57, 213–246 (2008)

  3. 3.

    Biler, P., Imbert, C., Karch, G.: Finite speed of propagation for a non-local porous medium equation (preprint)

  4. 4.

    Biler P., Imbert C., Karch G.: Barenblatt profiles for a nonlocal porous medium equation. C. R., Math. Acad. Sci. Paris 349, 641–645 (2011)

  5. 5.

    Biler P., Karch G., Monneau R.: Nonlinear diffusion of dislocation density and self-similar solutions.. Commun. Math. Phys. 294, 145–168 (2010)

  6. 6.

    Caffarelli L., Vázquez J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)

  7. 7.

    Caffarelli L.A., Soria F., Vázquez J.L.: Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. (JEMS) 15, 1701–1746 (2013)

  8. 8.

    Caffarelli L.A., Vázquez J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. 29, 1393–1404 (2011)

  9. 9.

    Carrillo J.A., Jüngel A., Markowich P.A., Toscani G., Unterreiter A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133, 1–82 (2001)

  10. 10.

    Córdoba A., Córdoba D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys., 249, 511–528 (2004)

  11. 11.

    de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409 (2011)

  12. 12.

    de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65, 1242–1284 (2012)

  13. 13.

    Droniou J., Imbert C.: Fractal first order partial differential equations. Arch. Ration. Mech. Anal. 182, 299–331 (2006)

  14. 14.

    Dyda B.: Fractional calculus for power functions and eigenvalues of the fractional laplacian. Fract. Calc. Appl. Anal. 15, 535–555 (2012)

  15. 15.

    Getoor R.K.: First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101, 75–90 (1961)

  16. 16.

    Huang, Y.: Explicit Barenblatt profiles for fractional porous medium equations. arXiv:1312.0469 [math.AP]. (2013)

  17. 17.

    Imbert C., Mellet A.: Existence of solutions for a higher order non-local equation appearing in crack dynamics.. Nonlinearity 24, 3487–3514 (2011)

  18. 18.

    Karch G., Miao C., Xu X.: On convergence of solutions of fractal Burgers equation toward rarefaction waves. SIAM J. Math. Anal. 39, 1536–1549 (2008)

  19. 19.

    Ladyzhenskaya, O., Solonnikov, V., Ural’tseva, N.: Linear and Quasi-Linear Equations of Parabolic Type. Translated from the Russian by S. Smith, p. 648. Translations of Mathematical Monographs. 23. American Mathematical Society (AMS), Providence, RI. XI, 1968

  20. 20.

    Liskevich, V.A., Semenov, Y.A.: Some problems on Markov semigroups. In: Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Vol. 11 of Math. Top., pp. 163–217. Akademie Verlag, Berlin, 1996

  21. 21.

    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966

  22. 22.

    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences. Springer, New York, 1983

  23. 23.

    Rakotoson J.M., Temam R.: An optimal compactness theorem and application to elliptic-parabolic systems. Appl. Math. Lett. 14, 303–306 (2001)

  24. 24.

    Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, vol. 3 of de Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin, 1996

  25. 25.

    Stan, D., del Teso, F., Vázquez, J.L.: Finite and infinite speed of propagation for porous medium equations with fractional pressure. arXiv:1311.7007 [math.AP]. (2013)

  26. 26.

    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, 1970

  27. 27.

    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean spaces. Princeton University Press, Princeton Mathematical Series, No. 32, Princeton, 1971

  28. 28.

    Taylor, M.E.: Tools for PDE, vol. 81 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2000 (pseudodifferential operators, paradifferential operators, and layer potentials)

  29. 29.

    Taylor, M.E.: Partial Differential Equations. III: Nonlinear Equations, 2nd edn, xxii, p. 715. Applied Mathematical Sciences 117. Springer, New York, 2011

  30. 30.

    Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations, vol. 33 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2006 (equations of porous medium type)

  31. 31.

    Vázquez, J.L.: The Porous Medium Equation. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, Oxford, 2007 (mathematical theory)

  32. 32.

    Vázquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. Preprint arXiv:1205.6332v1. (2012)

  33. 33.

    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995 (reprint of the second (1944) edition)

Download references

Author information

Correspondence to Cyril Imbert.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biler, P., Imbert, C. & Karch, G. The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions. Arch Rational Mech Anal 215, 497–529 (2015). https://doi.org/10.1007/s00205-014-0786-1

Download citation


  • Weak Solution
  • Mild Solution
  • Decay Estimate
  • Differential Inequality
  • Fourier Multiplier