Skip to main content
Log in

Directional Oscillations, Concentrations, and Compensated Compactness via Microlocal Compactness Forms

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This work introduces microlocal compactness forms (MCFs) as a new tool to study oscillations and concentrations in Lp-bounded sequences of functions. Decisively, MCFs retain information about the location, value distribution, and direction of oscillations and concentrations, thus extending at the same time the theories of (generalized) Young measures and H-measures. In Lp-spaces oscillations and concentrations precisely discriminate between weak and strong compactness, and thus MCFs allow one to quantify the difference in compactness. The definition of MCFs involves a Fourier variable, whereby differential constraints on the functions in the sequence can also be investigated easily—a distinct advantage over Young measure theory. Furthermore, pointwise restrictions are reflected in the MCF as well, paving the way for applications to Tartar’s framework of compensated compactness; consequently, we establish a new weak-to-strong compactness theorem in a “geometric” way. After developing several aspects of the abstract theory, we consider three applications; for lamination microstructures, the hierarchy of oscillations is reflected in the MCF. The directional information retained in an MCF is harnessed in the relaxation theory for anisotropic integral functionals. Finally, we indicate how the theory pertains to the study of propagation of singularities in certain systems of PDEs. The proofs combine measure theory, Young measures, and harmonic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J.J., Bouchitté G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 4, 129–147 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free-Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, 2000

  3. Antonić, N., Mitrović, D.: H-distributions: an extension of H-measures to an L p-L q setting. Abstr. Appl. Anal. Article ID 901,084 (2011)

  4. Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coifman R.R., Rochberg R., Weiss G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635 (1976)

    MATH  MathSciNet  Google Scholar 

  6. Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, Vol. 78, 2nd edn. Springer, Berlin, 2008

  7. De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. 170, 1417–1436 (2009)

  8. Diestel, J., Uhl, Jr., J.J.: Vector measures, Mathematical Surveys, Vol. 15. American Mathematical Society, Providence, 1977

  9. DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108, 667–689 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Dunford N.J., Schwartz J.T.: Linear Operators I: General Theory. Interscience Publishers, New York (1958)

    MATH  Google Scholar 

  11. Fermanian Kammerer, C., Gérard, P.: A Landau–Zener formula for non-degenerated involutive codimension 3 crossings. Ann. Henri Poincaré 4, 513–552 (2003)

  12. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: L p Spaces. Springer, Berlin, 2007

  13. Fonseca, I., Müller, S.: \({{\mathcal{A}}}\)-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390 (1999)

  14. Gérard, P.: Compacité par compensation et régularité deux-microlocale. In: Séminaire Équations aux Dérivées Partielles. École Polytechnique, Palaiseau, 1988–1989

  15. Gérard P.: Microlocal defect measures. Commun. Partial Differ. Equ. 16, 1761–1794 (1991)

    Article  MATH  Google Scholar 

  16. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, Vol. 249, 2nd edn. Springer, Berlin, 2008

  17. Hörmander, L.: The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Grundlehren der mathematischen Wissenschaften, Vol. 256, 2nd edn. Springer, Berlin, 1990

  18. Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Grundlehren der mathematischen Wissenschaften, Vol. 274. Springer, Berlin, 2007

  19. Joly, J.L., Métivier, G., Rauch, J.: Trilinear compensated compactness and nonlinear geometric optics. Ann. Math. 142, 121–169 (1995)

  20. Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115, 329–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kinderlehrer D., Pedregal P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4, 59–90 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kirchheim, B.: Rigidity and Geometry of Microstructures. Lecture Notes 16. Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, 2003

  23. Kristensen, J., Rindler, F.: Characterization of generalized gradient Young measures generated by sequences in W1,1 and BV. Arch. Ration. Mech. Anal. 197, 539–598 (2010) [Erratum: 203, 693–700 (2012)]

  24. Kružík, M., Roubícek T.: On the measures of DiPerna and Majda. Math. Bohem. 122, 383–399 (1997)

  25. McLaughlin, D., Papanicolaou, G., Tartar, L.: Weak limits of semilinear hyperbolic systems with oscillating data. Macroscopic Modelling of Turbulent Flows (Nice, 1984). Lecture Notes in Physics, Vol. 230. Springer, Berlin, 277–289, 1985

  26. Mielke A.: Flow properties for Young-measure solutions of semilinear hyperbolic problems. Proc. Roy. Soc. Edinb. Sect. A 129, 85–123 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Müller S.: Rank-one convexity implies quasiconvexity on diagonal matrices. Int. Math. Res. Not. 20, 1087–1095 (1999)

    Article  Google Scholar 

  28. Müller, S.: Variational models for microstructure and phase transitions. Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Mathematics, Vol. 1713, pp. 85–210. Springer (1999)

  29. Murat F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 489–507 (1978)

    MATH  MathSciNet  Google Scholar 

  30. Murat, F.: Compacité par compensation. II. Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978). Pitagora, 245–256, 1979

  31. Murat, F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8, 69–102 (1981)

  32. Rindler, F.: Lower semicontinuity for integral functionals in the space of functions of bounded deformation via rigidity and Young measures. Arch. Ration. Mech. Anal. 202, 63–113 (2011)

  33. Rindler F.: Lower semicontinuity and Young measures in BV without Alberti’s Rank-One Theorem. Adv. Calc. Var. 5, 127–159 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rindler, F.: A local proof for the characterization of Young measures generated by sequences in BV. J. Funct. Anal. 266, 6335–6371 (2014)

  35. Ryan, R.A.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, Berlin, 2002

  36. Stefanov, A.: Pseudodifferential operators with rough symbols. J. Fourier Anal. Appl. 16, 97–128 (2010)

  37. Stein E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  38. Sychev, M.A.: Characterization of homogeneous gradient Young measures in case of arbitrary integrands. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29, 531–548 (2000)

  39. Székelyhidi, L., Wiedemann, E.: Young measures generated by ideal incompressible fluid flows. Arch. Ration. Mech. Anal. 206, 333–366 (2012)

  40. Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV. Research Notes in Mathematics, Vol. 39. Pitman, 136–212, 1979

  41. Tartar, L.: The compensated compactness method applied to systems of conservation laws. Systems of Nonlinear Partial Differential Equations (Oxford, 1982). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 111. Reidel, pp. 263–285, 1983

  42. Tartar, L.: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinb. Sect. A 115, 193–230 (1990)

  43. Tartar L.: Beyond Young measures. Meccanica 30, 505–526 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  44. Tartar, L.: An Introduction to Navier–Stokes Equation and Oceanography. Lecture Notes of the Unione Matematica Italiana, Vol. 1. Springer, Berlin, 2006

  45. Tartar, L.: The General Theory of Homogenization. A Personalized Introduction. Lecture Notes of the Unione Matematica Italiana, Vol. 7. Springer, Berlin, 2009

  46. Taylor, M.E.: Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics, Vol. 100. Birkhäuser, Basel, 1991

  47. Taylor, M.E.: Partial Differential Equations I. Basic Theory, Applied Mathematical Sciences, Vol. 115, 2nd edn. Springer, Berlin, 2011

  48. Taylor, M.E.: Partial Differential Equations II. Qualitative Studies of Linear Equations. Applied Mathematical Sciences, Vol. 116, 2nd edn. Springer, Berlin, 2011

  49. Taylor, M.E.: Partial Differential Equations III. Nonlinear Equations. Applied Mathematical Sciences, Vol. 117, 2nd edn. Springer, Berlin, 2011

  50. Young L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. C. R. Soc. Sci. Lett. Varsovie, Cl. III 30, 212–234 (1937)

    MATH  Google Scholar 

  51. Young L.C.: Generalized surfaces in the calculus of variations. Ann. Math. 43, 84–103 (1942)

    Article  Google Scholar 

  52. Young L.C.: Generalized surfaces in the calculus of variations. II. Ann. Math. 43, 530–544 (1942)

    MATH  Google Scholar 

  53. Young, L.C.: Lectures on the Calculus of Variations and Optimal Control Theory, 2nd edn. Chelsea, New York, 1980 (Reprinted by AMS Chelsea Publishing 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Rindler.

Additional information

Communicated by A. Mielke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rindler, F. Directional Oscillations, Concentrations, and Compensated Compactness via Microlocal Compactness Forms. Arch Rational Mech Anal 215, 1–63 (2015). https://doi.org/10.1007/s00205-014-0783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0783-4

Keywords

Navigation