Skip to main content
Log in

Quasistatic Droplets in Randomly Perforated Domains

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the Hele-Shaw problem in a randomly perforated domain with zero Neumann boundary conditions. A homogenization limit is obtained as the characteristic scale of the domain goes to zero. Specifically, we prove that the solutions as well as their free boundaries converge uniformly to those corresponding to a homogeneous and anisotropic Hele-Shaw problem set in \({\mathbb{R}^{d}}\). The main challenge when deriving the limit lies in controlling the oscillations of the free boundary. This is overcome first by extending De Giorgi–Nash–Moser type estimates to perforated domains and second by proving the almost sure non-degenerate growth of the solution near its free boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akcoglu M.A., Krengel U.: Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 53–67 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Alberti G., DeSimone A.: Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Ration. Mech. Anal. 202(1), 295–348 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barlow M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bensoussan A., Lions J.L., Papanicolaou G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, Vol. 5. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  5. Biskup M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blank I.: Sharp results for the regularity and stability of the free boundary in the obstacle problem. Indiana Univ. Math. J. 50(3), 1077–1112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blank, I., Hao, Z.: The mean value theorem for divergence form elliptic operators. arXiv:1302.2952 (2013)

  8. Caffarelli L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caffarelli L.A., Mellet A.: Random homogenization of an obstacle problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2), 375–395 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Caffarelli L.A., Lee K.-A., Mellet A.: Flame propagation in one-dimensional stationary ergodic media. Math. Models Methods Appl. Sci., 17(01), 155–169 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Caffarelli L.A., Lee K.-A., Mellet A.: Singular limit and homogenization for flame propagation in periodic excitable media. Arch. Ration. Mech. Anal. 172(2), 153–190 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Caffarelli L.A., Souganidis P.E., Wang L.: Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Commun. Pure Appl. Math. 58(3), 319–361 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Choi S., Jerison D., Kim I.: Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface. Am. J. Math. 129(2), 527–582 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Choi S., Kim I.: Waiting time phenomena of the Hele-Shaw and the Stefan problem. Indiana Univ. Math. J. 55(2), 525–552 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cioranescu D., Donato P.: Homogénéisation du probleme de neumann non homogene dans des ouverts perforés. Asymptot. Anal. 1(2), 115–138 (1988)

    MATH  MathSciNet  Google Scholar 

  16. Cioranescu D., Paulin J.S.J.: Homogenization in open sets with holes. J. Math. Anal. Appl. 71(2), 590–607 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dal Maso G., Modica L.: Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368, 28–42 (1986)

    MATH  MathSciNet  Google Scholar 

  18. De Giorgi E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3, 25–43 (1957)

    MathSciNet  Google Scholar 

  19. Delmotte T.: Parabolic harnack inequality and estimates of markov chains on graphs. Rev. Mat. Iberoam. 15(1), 181–232 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Elliott C.M., Janovsky V.: A variational inequality approach to Hele-Shaw flow with a moving boundary. Proc. R. Soc. Edinb. Sect. A 88(1–2), 93–107 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992

  22. Fabes E.B., Stroock D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96(4), 327–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Glasner K.B.: A boundary integral formulation of quasi-steady fluid wetting. J. Comput. Phys. 207(2), 529–541 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Grigor′yan A.A.: The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182(1), 55–87 (1991)

    MATH  Google Scholar 

  25. Grimmett, G.: Percolation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 321, 2nd edn. Springer, Berlin, 1999

  26. Grunewald N., Kim I.C.: A variational approach to a quasi-static droplet model. Calc. Var. Partial Differ. Equ. 41(1), 1–19 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hele-Shaw H.S.: Flow of water. Nature 58(1489), 34–36 (1898)

    Article  ADS  Google Scholar 

  28. Jerison D., Kim I.: The one-phase hele-shaw problem with singularities. J. Geom. Anal. 15(4), 641–667 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jikov, V.V., Kozlov, S.M., Olenik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosif′yan]

  30. Kim I., Mellet A.: Homogenization of Hele-Shaw problem in periodic and random media. Arch. Ration. Mech. Anal. 194(2), 507–530 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kim I.C.: Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168(4), 299–328 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kim I.C.: A free boundary problem arising in flame propagation. J. Differ. Equ. 191(2), 470–489 (2003)

    Article  ADS  MATH  Google Scholar 

  33. Kim I.C.: Homogenization of the free boundary velocity. Arch. Ration. Mech. Anal. 185(1), 69–103 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kim I.C., Mellet A.: Homogenization of one-phase Stefan-type problems in periodic and random media. Trans. Am. Math. Soc. 362(8), 4161–4190 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications, Vol. 88. Academic Press, Dublin, 1980

  36. Kozlov S.M.: Averaging of random structures. Dokl. Akad. Nauk SSSR 241(5), 1016–1019 (1978)

    MathSciNet  Google Scholar 

  37. Levine L., Peres Y.: Scaling limits for internal aggregation models with multiple sources. J. Anal. Math. 111, 151–219 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Littman W., Stampacchia G., Weinberger H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 17(3), 43–77 (1963)

    MATH  MathSciNet  Google Scholar 

  39. Mellet A., Nolen J.: Capillary drops on a rough surface. Interfaces Free Boundaries 14(2), 167–184 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Moser J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13(3), 457–468 (1960)

    Article  MATH  Google Scholar 

  41. Papanicolaou G.C., Varadhan S.R.S.: Boundary value problems with rapidly oscillating random coefficients. Random Fields, Vol. I, II (Esztergom, 1979), Vol. 27 of Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam, 835–873, 1981

  42. Saloff-Coste L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36(2), 417–450 (1992)

    MATH  MathSciNet  Google Scholar 

  43. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, Vol. 30. Princeton University Press, Princeton, 1970

  44. Zhikov V.V.: Averaging in punctured random domains of general type. Mat. Zametki 53(1), 41–58, 155 (1993)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nestor Guillen.

Additional information

Communicated by C. Le Bris

N. Guillen is supported by NSF DMS-1201413. I. Kim is supported by NSF DMS-0970072.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillen, N., Kim, I. Quasistatic Droplets in Randomly Perforated Domains. Arch Rational Mech Anal 215, 211–281 (2015). https://doi.org/10.1007/s00205-014-0777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0777-2

Keywords

Navigation