Abstract
We consider the Hele-Shaw problem in a randomly perforated domain with zero Neumann boundary conditions. A homogenization limit is obtained as the characteristic scale of the domain goes to zero. Specifically, we prove that the solutions as well as their free boundaries converge uniformly to those corresponding to a homogeneous and anisotropic Hele-Shaw problem set in \({\mathbb{R}^{d}}\). The main challenge when deriving the limit lies in controlling the oscillations of the free boundary. This is overcome first by extending De Giorgi–Nash–Moser type estimates to perforated domains and second by proving the almost sure non-degenerate growth of the solution near its free boundary.
Similar content being viewed by others
References
Akcoglu M.A., Krengel U.: Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 53–67 (1981)
Alberti G., DeSimone A.: Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Ration. Mech. Anal. 202(1), 295–348 (2011)
Barlow M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)
Bensoussan A., Lions J.L., Papanicolaou G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, Vol. 5. North-Holland Publishing Co., Amsterdam (1978)
Biskup M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)
Blank I.: Sharp results for the regularity and stability of the free boundary in the obstacle problem. Indiana Univ. Math. J. 50(3), 1077–1112 (2001)
Blank, I., Hao, Z.: The mean value theorem for divergence form elliptic operators. arXiv:1302.2952 (2013)
Caffarelli L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)
Caffarelli L.A., Mellet A.: Random homogenization of an obstacle problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2), 375–395 (2009)
Caffarelli L.A., Lee K.-A., Mellet A.: Flame propagation in one-dimensional stationary ergodic media. Math. Models Methods Appl. Sci., 17(01), 155–169 (2007)
Caffarelli L.A., Lee K.-A., Mellet A.: Singular limit and homogenization for flame propagation in periodic excitable media. Arch. Ration. Mech. Anal. 172(2), 153–190 (2004)
Caffarelli L.A., Souganidis P.E., Wang L.: Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Commun. Pure Appl. Math. 58(3), 319–361 (2005)
Choi S., Jerison D., Kim I.: Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface. Am. J. Math. 129(2), 527–582 (2007)
Choi S., Kim I.: Waiting time phenomena of the Hele-Shaw and the Stefan problem. Indiana Univ. Math. J. 55(2), 525–552 (2006)
Cioranescu D., Donato P.: Homogénéisation du probleme de neumann non homogene dans des ouverts perforés. Asymptot. Anal. 1(2), 115–138 (1988)
Cioranescu D., Paulin J.S.J.: Homogenization in open sets with holes. J. Math. Anal. Appl. 71(2), 590–607 (1979)
Dal Maso G., Modica L.: Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368, 28–42 (1986)
De Giorgi E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3, 25–43 (1957)
Delmotte T.: Parabolic harnack inequality and estimates of markov chains on graphs. Rev. Mat. Iberoam. 15(1), 181–232 (1999)
Elliott C.M., Janovsky V.: A variational inequality approach to Hele-Shaw flow with a moving boundary. Proc. R. Soc. Edinb. Sect. A 88(1–2), 93–107 (1981)
Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992
Fabes E.B., Stroock D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96(4), 327–338 (1986)
Glasner K.B.: A boundary integral formulation of quasi-steady fluid wetting. J. Comput. Phys. 207(2), 529–541 (2005)
Grigor′yan A.A.: The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182(1), 55–87 (1991)
Grimmett, G.: Percolation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 321, 2nd edn. Springer, Berlin, 1999
Grunewald N., Kim I.C.: A variational approach to a quasi-static droplet model. Calc. Var. Partial Differ. Equ. 41(1), 1–19 (2011)
Hele-Shaw H.S.: Flow of water. Nature 58(1489), 34–36 (1898)
Jerison D., Kim I.: The one-phase hele-shaw problem with singularities. J. Geom. Anal. 15(4), 641–667 (2005)
Jikov, V.V., Kozlov, S.M., Olenik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosif′yan]
Kim I., Mellet A.: Homogenization of Hele-Shaw problem in periodic and random media. Arch. Ration. Mech. Anal. 194(2), 507–530 (2009)
Kim I.C.: Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168(4), 299–328 (2003)
Kim I.C.: A free boundary problem arising in flame propagation. J. Differ. Equ. 191(2), 470–489 (2003)
Kim I.C.: Homogenization of the free boundary velocity. Arch. Ration. Mech. Anal. 185(1), 69–103 (2007)
Kim I.C., Mellet A.: Homogenization of one-phase Stefan-type problems in periodic and random media. Trans. Am. Math. Soc. 362(8), 4161–4190 (2010)
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications, Vol. 88. Academic Press, Dublin, 1980
Kozlov S.M.: Averaging of random structures. Dokl. Akad. Nauk SSSR 241(5), 1016–1019 (1978)
Levine L., Peres Y.: Scaling limits for internal aggregation models with multiple sources. J. Anal. Math. 111, 151–219 (2010)
Littman W., Stampacchia G., Weinberger H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 17(3), 43–77 (1963)
Mellet A., Nolen J.: Capillary drops on a rough surface. Interfaces Free Boundaries 14(2), 167–184 (2012)
Moser J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13(3), 457–468 (1960)
Papanicolaou G.C., Varadhan S.R.S.: Boundary value problems with rapidly oscillating random coefficients. Random Fields, Vol. I, II (Esztergom, 1979), Vol. 27 of Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam, 835–873, 1981
Saloff-Coste L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36(2), 417–450 (1992)
Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, Vol. 30. Princeton University Press, Princeton, 1970
Zhikov V.V.: Averaging in punctured random domains of general type. Mat. Zametki 53(1), 41–58, 155 (1993)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Le Bris
N. Guillen is supported by NSF DMS-1201413. I. Kim is supported by NSF DMS-0970072.
Rights and permissions
About this article
Cite this article
Guillen, N., Kim, I. Quasistatic Droplets in Randomly Perforated Domains. Arch Rational Mech Anal 215, 211–281 (2015). https://doi.org/10.1007/s00205-014-0777-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-014-0777-2