Advertisement

Archive for Rational Mechanics and Analysis

, Volume 215, Issue 1, pp 211–281 | Cite as

Quasistatic Droplets in Randomly Perforated Domains

  • Nestor GuillenEmail author
  • Inwon Kim
Article
  • 146 Downloads

Abstract

We consider the Hele-Shaw problem in a randomly perforated domain with zero Neumann boundary conditions. A homogenization limit is obtained as the characteristic scale of the domain goes to zero. Specifically, we prove that the solutions as well as their free boundaries converge uniformly to those corresponding to a homogeneous and anisotropic Hele-Shaw problem set in \({\mathbb{R}^{d}}\). The main challenge when deriving the limit lies in controlling the oscillations of the free boundary. This is overcome first by extending De Giorgi–Nash–Moser type estimates to perforated domains and second by proving the almost sure non-degenerate growth of the solution near its free boundary.

Keywords

Weak Solution Free Boundary Viscosity Solution Free Boundary Problem Universal Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akcoglu M.A., Krengel U.: Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 53–67 (1981)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Alberti G., DeSimone A.: Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Ration. Mech. Anal. 202(1), 295–348 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Barlow M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bensoussan A., Lions J.L., Papanicolaou G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, Vol. 5. North-Holland Publishing Co., Amsterdam (1978)Google Scholar
  5. 5.
    Biskup M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Blank I.: Sharp results for the regularity and stability of the free boundary in the obstacle problem. Indiana Univ. Math. J. 50(3), 1077–1112 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Blank, I., Hao, Z.: The mean value theorem for divergence form elliptic operators. arXiv:1302.2952 (2013)
  8. 8.
    Caffarelli L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Caffarelli L.A., Mellet A.: Random homogenization of an obstacle problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(2), 375–395 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Caffarelli L.A., Lee K.-A., Mellet A.: Flame propagation in one-dimensional stationary ergodic media. Math. Models Methods Appl. Sci., 17(01), 155–169 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Caffarelli L.A., Lee K.-A., Mellet A.: Singular limit and homogenization for flame propagation in periodic excitable media. Arch. Ration. Mech. Anal. 172(2), 153–190 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Caffarelli L.A., Souganidis P.E., Wang L.: Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Commun. Pure Appl. Math. 58(3), 319–361 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Choi S., Jerison D., Kim I.: Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface. Am. J. Math. 129(2), 527–582 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Choi S., Kim I.: Waiting time phenomena of the Hele-Shaw and the Stefan problem. Indiana Univ. Math. J. 55(2), 525–552 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Cioranescu D., Donato P.: Homogénéisation du probleme de neumann non homogene dans des ouverts perforés. Asymptot. Anal. 1(2), 115–138 (1988)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Cioranescu D., Paulin J.S.J.: Homogenization in open sets with holes. J. Math. Anal. Appl. 71(2), 590–607 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Dal Maso G., Modica L.: Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368, 28–42 (1986)zbMATHMathSciNetGoogle Scholar
  18. 18.
    De Giorgi E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3, 25–43 (1957)MathSciNetGoogle Scholar
  19. 19.
    Delmotte T.: Parabolic harnack inequality and estimates of markov chains on graphs. Rev. Mat. Iberoam. 15(1), 181–232 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Elliott C.M., Janovsky V.: A variational inequality approach to Hele-Shaw flow with a moving boundary. Proc. R. Soc. Edinb. Sect. A 88(1–2), 93–107 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992Google Scholar
  22. 22.
    Fabes E.B., Stroock D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96(4), 327–338 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Glasner K.B.: A boundary integral formulation of quasi-steady fluid wetting. J. Comput. Phys. 207(2), 529–541 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Grigor′yan A.A.: The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182(1), 55–87 (1991)zbMATHGoogle Scholar
  25. 25.
    Grimmett, G.: Percolation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 321, 2nd edn. Springer, Berlin, 1999Google Scholar
  26. 26.
    Grunewald N., Kim I.C.: A variational approach to a quasi-static droplet model. Calc. Var. Partial Differ. Equ. 41(1), 1–19 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Hele-Shaw H.S.: Flow of water. Nature 58(1489), 34–36 (1898)ADSCrossRefGoogle Scholar
  28. 28.
    Jerison D., Kim I.: The one-phase hele-shaw problem with singularities. J. Geom. Anal. 15(4), 641–667 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Jikov, V.V., Kozlov, S.M., Olenik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosif′yan]Google Scholar
  30. 30.
    Kim I., Mellet A.: Homogenization of Hele-Shaw problem in periodic and random media. Arch. Ration. Mech. Anal. 194(2), 507–530 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Kim I.C.: Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168(4), 299–328 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Kim I.C.: A free boundary problem arising in flame propagation. J. Differ. Equ. 191(2), 470–489 (2003)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Kim I.C.: Homogenization of the free boundary velocity. Arch. Ration. Mech. Anal. 185(1), 69–103 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Kim I.C., Mellet A.: Homogenization of one-phase Stefan-type problems in periodic and random media. Trans. Am. Math. Soc. 362(8), 4161–4190 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications, Vol. 88. Academic Press, Dublin, 1980Google Scholar
  36. 36.
    Kozlov S.M.: Averaging of random structures. Dokl. Akad. Nauk SSSR 241(5), 1016–1019 (1978)MathSciNetGoogle Scholar
  37. 37.
    Levine L., Peres Y.: Scaling limits for internal aggregation models with multiple sources. J. Anal. Math. 111, 151–219 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Littman W., Stampacchia G., Weinberger H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 17(3), 43–77 (1963)zbMATHMathSciNetGoogle Scholar
  39. 39.
    Mellet A., Nolen J.: Capillary drops on a rough surface. Interfaces Free Boundaries 14(2), 167–184 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Moser J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13(3), 457–468 (1960)CrossRefzbMATHGoogle Scholar
  41. 41.
    Papanicolaou G.C., Varadhan S.R.S.: Boundary value problems with rapidly oscillating random coefficients. Random Fields, Vol. I, II (Esztergom, 1979), Vol. 27 of Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam, 835–873, 1981Google Scholar
  42. 42.
    Saloff-Coste L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36(2), 417–450 (1992)zbMATHMathSciNetGoogle Scholar
  43. 43.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, Vol. 30. Princeton University Press, Princeton, 1970Google Scholar
  44. 44.
    Zhikov V.V.: Averaging in punctured random domains of general type. Mat. Zametki 53(1), 41–58, 155 (1993)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations