Skip to main content
Log in

Degenerate Hyperbolic Conservation Laws with Dissipation: Reduction to and Validity of a Class of Burgers-Type Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A conservation law is said to be degenerate or critical if the Jacobian of the flux vector evaluated on a constant state has a zero eigenvalue. In this paper, it is proved that a degenerate conservation law with dissipation will generate dynamics on a long time scale that resembles Burger’s dynamics. The case of k-fold degeneracy is also treated, and it is shown that it leads to a reduction to a quadratically coupled k-fold system of Burgers-type equations. Validity of the reduction and existence for the reduced system is proved in the class of uniformly local spaces, thereby capturing both finite and infinite energy solutions. The theory is applied to some examples, from stratified shallow-water hydrodynamics, that model the birth of hydraulic jumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, vol. I. Birkhäuser, Boston (1985)

  2. Baines P.G.: A general method for determining upstream effects in stratified flow of finite depth over long two-dimensional obstacles. J. Fluid Mech. 188, 1–22 (1988)

    Article  ADS  MATH  Google Scholar 

  3. Beck M., Wayne C.E.: Invariant manifolds and the stability of traveling waves in scalar viscous conservation laws. J. Differ. Equ. 244, 87–116 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Beck M., Wayne C.E.: Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity. SIAM J. Appl. Dyn. Syst. 8, 1043–1065 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Benjamin T.B., Bowman S.: Discontinuous solutions of one-dimensional hamiltonian systems. Proc. R. Soc. Lond. A 413, 263–295 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bernoff A.J.: Slowly varying fully nonlinear wavetrains in the Ginzburg–Landau equation. Physica D 30, 363–381 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bridges T.J.: Degenerate relative equilibria, curvature of the momentum map and homoclinic bifurcation. J. Differ. Equ. 244, 1629–1674 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Bridges T.J., Donaldson N.M.: Criticality manifolds and their role in the generation of solitary waves for two-layer flow with a free surface. Eur. J. Mech. B/Fluids 28, 117–126 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Burgers J.M.: The Nonlinear Diffusion Equation, D. Reidel Publishing Company, Dordrecht (1974)

    Book  Google Scholar 

  10. Crighton D.: Model equation of nonlinear acoustics. Ann. Rev. Fluid Mech. 11, 11–33 (1979)

    Article  ADS  Google Scholar 

  11. Doelman, A., Sandstede, B., Scheel, A., Schneider, G.: The Dynamics of Modulated Wave Trains. Memoirs AMS, vol. 199. AMS, Providence (2009)

  12. Efendiev M.A., Zelik S.V.: The attractor for a nonlinear reaction–diffusion system in an unbounded domain.. Commun. Pure Appl. Math. 54, 625–688 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Efendiev M.A., Zelik S.V.: Upper and lower bounds for the Kolmogorov entropy of the attractor for an RDE in an unbounded domain. J. Dyn. Differ. Equ. 14, 369–403 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Esipov S.E.: Coupled Burgers equations: a model of polydispersive sedimentation. Phys. Rev. E 52, 3711–3718 (1995)

    Article  ADS  Google Scholar 

  15. Frankcombe L.M., Hogg A.: Tidal modulation of two-layer hydraulic exchange flows. Ocean Sci. 3, 179–188 (2007)

    Article  Google Scholar 

  16. Freistühler H., Szmolyan P.: Spectral stability of small shock waves. Arch. Ration. Mech. Anal. 164, 287–309 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Golubitsky M., Guillemin V.: Stable Mappings and Their Singularities. Springer, New York (1973)

    Book  MATH  Google Scholar 

  18. Hewitt R.E., Hall P.: The evolution of finite-amplitude wavetrains in plane channel flow. Phil. Trans. R. Soc. Lond. A 356, 2413–2446 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Lane-Serff G.F., Smeed D.A., Postlethwaite C.R.: Multi-layer hydraulic exchange flows. J. Fluid Mech. 416, 269–296 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Levine H.A.: Some additional remarks on the non-existence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. 5, 138–146 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  21. Marche F.: Derivation of a new two-dimensional viscous shallow-water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B/Fluids 26, 49–63 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Mielke A., Schneider G.: Attractors for modulation equations on unbounded domains—existence and comparison.. Nonlinearity 8, 743–768 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Miranville A., Zelik S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. Handb. Differ. Equ. 4, 103–200 (2008)

    MathSciNet  Google Scholar 

  24. Plaza R., Zumbrun K.: An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete Contin. Dyn. Syst. 10, 885–924 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Porteous, I.R.: Simple singularities of maps. Proceedings of the Liverpool Singularities Symposium, pp. 286–307. Lecture Notes in Mathematics, vol. 192. Springer, Berlin (1971)

  26. Schaeffer D.G., Shearer M.: The classification of 2 ×  2 systems of non-strictly hyperbolic conservation laws, with applications to oil recovery. Commun. Pure Appl. Math. 40, 141–178 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Szepessy A., Zumbrun K.: Stability of rarefaction waves in viscous media. Arch. Ration. Mech. Anal. 133, 249–298 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Smeed D.A.: Hydraulic control of three-layer exchange flows: application to the Bab al Mandab. J. Phys. Ocean. 30, 2574–2588 (2000)

    Article  ADS  Google Scholar 

  29. Whitham G.: Linear and Nonlinear Waves. Wiley Interscience, New York (1974)

    MATH  Google Scholar 

  30. Zelik S.V.: Attractors of reaction–diffusion systems in unbounded domains and their spatial complexity. Commun. Pure Appl. Math. 56, 584–637 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zelik S.V.: Spatially nondecaying solutions of 2D Navier–Stokes equations in a strip. Glasg. Math. J. 49(3), 525–588 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bridges.

Additional information

Communicated by A. Mielke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridges, T., Pennant, J. & Zelik, S. Degenerate Hyperbolic Conservation Laws with Dissipation: Reduction to and Validity of a Class of Burgers-Type Equations. Arch Rational Mech Anal 214, 671–716 (2014). https://doi.org/10.1007/s00205-014-0772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0772-7

Keywords

Navigation