Skip to main content

Shapes of Epitaxially Grown Quantum Dots

Abstract

A variational model introduced by Spencer and Tersoff (Appl. Phys. Lett. 96:073114, 2010) to describe optimal faceted shapes of epitaxially deposited films is studied analytically in the case in which there are a non-vanishing crystallographic miscut and a lattice incompatibility between the film and the substrate. The existence of faceted minimizers for every volume of the deposited film is established. In particular, it is shown that there is no wetting effect for small volumes. Geometric properties including a faceted version of the zero contact angle are derived, and the explicit shapes of minimizers for small volumes are identified.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bella, P., Goldman, M., Zwicknagl, B.: Study of island formation on unbounded domains. (2014). arXiv:1402.3955

  2. 2.

    Bonnetier E., Chambolle A.: Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62(4), 1093–1121 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Chambolle A., Larsen C.J.: C regularity of the free boundary for a two-dimensional optimal compliance problem. Calc. Var. PDE 18(1), 77–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    Chambolle A., Solci M.: Interaction of a bulk and a surface energy with a geometrical constraint. SIAM J. Math. Anal. 39(1), 77–102 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Denker, U., Rastelli, A., Stoffel, M., Tersoff, J., Katsaros, G., Constantini, G., Kern, K., Jin-Phillip, N.Y., Jesson, D.E., Schmidt, O.G.: Lateral motion of SiGe islands driven by surface-mediated alloying. Phys. Rev. Lett. 94, 216103 (2005)

  6. 6.

    Fonseca, I., Fusco, N., Leoni, G., Millot, V.: Material voids in elastic solids with anisotropic surface energies. J. Math. Pures Appl. 96(6), 591–639 (2011)

  7. 7.

    Fonseca I., Fusco N., Leoni G., Morini M.: Equilibrium configurations of epitaxially strained crystaline films: Existence and regularity results. Arch. Rat. Mech. Anal. 186(3), 477–537 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. 8.

    Fonseca I., Fusco N., Leoni G., Morini M.: Motion of elastic thin films by anisotropic surface diffusion with curvature regularization. Arch. Rat. Mech. Anal. 205(2), 425–466 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. 9.

    Fusco N., Morini M.: Equilibrium configurations of epitaxially strained elastic films: second order minimality conditions and qualitative properties of solutions. Arch. Rat. Mech. Anal. 203(1), 247–327 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Gao H., Nix W.D.: Surface roughening of heteroepitaxial thin films. Ann. Rev. Mater. Sci. 29, 173–209 (1999)

    ADS  Article  Google Scholar 

  11. 11.

    Goldman M., Zwicknagl B.: Scaling law and reduced models for epitaxially strained crystalline films. SIAM J. Math. Anal. 46, 1–24 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Gray, J.L., Hull, R., Floro, J.A.: Formation of one-dimensional surface grooves from pit instabilities in annealed SiGe/Si (100) epitaxial films. Appl. Phys. Lett. 85(15) (2004)

  13. 13.

    Piovano P.: Evolution of elastic thin films with curvature regularization via minimizing movements. Calc. Var. PDE 49, 337–367 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Ross, F.M., Tromp, R.M., Reuter, M.C.: Transition states between pyramids and domes during Ge/Si island growth. Science 286, 1931–1934 (1999)

  15. 15.

    Schulze, T.P., Smereka, P.: Kinetic Monte Carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings. Phys. Rev. B 86, 235313 (2012)

  16. 16.

    Spencer B.J.: Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski–Krastanow islands. Phys. Rev. B 59, 2011–2017 (1999)

    ADS  Article  Google Scholar 

  17. 17.

    Spencer B.J., Tersoff J.: Equilibrium shapes and properties of epitaxially strained islands. Phys. Rev. Lett. 79, 4858–4861 (1997)

    ADS  Article  Google Scholar 

  18. 18.

    Spencer B.J., Tersoff J.: Asymmetry and shape transitions of epitaxially strained islands on vicinal surfaces. Appl. Phys. Lett. 96, 073114 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    Spencer, B.J., Tersoff, J.: Symmetry breaking in shape transitions of epitaxial quantum dots. Phys. Rev. B 87, 161301 (5 pages) (2013)

  20. 20.

    Stangl J., Holý V., Bauer G.: Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 76, 725 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    Sutter P., Sutter E., Vescan L.: Barrierless self-assembly of Ge quantum dots on Si(001) substrates with high local vicinality. Appl. Phys. Lett. 87, 161916 (2005)

    ADS  Article  Google Scholar 

  22. 22.

    Tersoff J., Tromp R.M.: Shape transition in growth of strained islands: spontaneous formation of quantum wires. Phys. Rev. Lett. 70(18), 2782–2786 (1993)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Irene Fonseca.

Additional information

Communicated by The Editors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fonseca, I., Pratelli, A. & Zwicknagl, B. Shapes of Epitaxially Grown Quantum Dots. Arch Rational Mech Anal 214, 359–401 (2014). https://doi.org/10.1007/s00205-014-0767-4

Download citation

Keywords

  • Surface Energy
  • Elastic Energy
  • Admissible Function
  • Surface Energy Density
  • Euclidean Length