Skip to main content
Log in

A Refinement of the Local Serrin-Type Regularity Criterion for a Suitable Weak Solution to the Navier–Stokes Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We formulate a new criterion for regularity of a suitable weak solution v to the Navier–Stokes equations at the space-time point (x 0, t 0). The criterion imposes a Serrin-type integrability condition on v only in a backward neighbourhood of (x 0, t 0), intersected with the exterior of a certain space-time paraboloid with vertex at point (x 0, t 0). We make no special assumptions on the solution in the interior of the paraboloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borchers W., Sohr H.: On the equations rot v = g and div u = f with zero boundary conditions. Hokkaido Math. J. 19, 67–87 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Farwig, R., Kozono, H., Sohr, H.: Criteria of local in time regularity of the Navier–Stokes equations beyond Serrin’s condition. Banach Center Publ. 81, Parabolic and Navier–Stokes Equations, Part 1. Warsaw, 175–184 (2008)

  4. Galdi, G.P.: An Introduction to the Navier–Stokes initial–boundary value problem. In: Fundamental Directions in Mathematical Fluid Mechanics, (Eds. Galdi G.P., Heywood J. and Rannacher R.) series “Advances in Mathematical Fluid Mechanics”. Birkhauser, Basel, 1–98 (2000)

  5. Kučera P., Skalák Z.: A note on the generalized energy inequality in the Navier–Stokes equations. Appl. Math. 48, 537–545 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ladyzhenskaya, O.A.: Mathematical Problems in the Dynamics of Viscous Incompressible Fluid. Gordon and Breach, New York (1963)

  7. Ladyzhenskaya O.A., Seregin G.A.: On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356–387 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Lin F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm. Pure Appl. Math. 51, 241–257 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Nečas J., Neustupa J.: New conditions for local regularity of a suitable weak solution to the Navier–Stokes equations. J. Math. Fluid Mech. 4, 237–256 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Neustupa J.: A note on local interior regularity of a suitable weak solution to the Navier–Stokes problem. Discr. Cont. Dyn. Syst. Ser. S. 6(5), 1391–1400 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Neustupa J.: A removable singularity in a suitable weak solution to the Navier–Stokes equations. Nonlinearity 25, 1695–1708 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Saks R.S.: Spectral problems for the Curl and Stokes operators. Doklady Mathematics 76(2), 724–728 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Scheffer V.: Hausdorff measure and the Navier–Stokes equations. Comm. Math. Phys. 55, 97–112 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Šebestová, I., Vejchodský, T.: Two-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace and Similar Constants. Nečas Center for Mathematical Modelling, Preprint No. 2013-05, Prague (2013)

  15. Seregin G., Šverák V.: On smoothness of suitable weak solutions to the Navier–Stokes equations. J. Math. Sci. 130(4), 4884–4892 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Seregin G.A.: Local regularity for suitable weak solutions of the Navier–Stokes equations. Russian Math. Surveys 62(3), 595–614 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Basel, Boston, Berlin (2001)

  18. Takahashi S.: On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscripta Math. 69(3), 237–254 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. Temam, R.: Navier–Stokes Equations. North–Holland, Amsterdam, New York, Oxford (1977)

  21. Vasseur A.: A new proof of partial regularity of solutions to Navier–Stokes equations. Nonlin. Diff. Eq. Appl. 14, 753–785 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wolf, J.: A new criterion for partial regularity of suitable weak solutions to the Navier–Stokes equations. Advances in Mathematical Fluid Mechanics (Eds. Rannacher R. and Sequeira A.) Springer, Berlin, 613–630 (2010)

  23. Yurinsky V.V.: A lower bound for the principal eigenvalue of the Stokes operator in a random domain. Annales de l’Institut Henri Poincaré—Probabilités et Statistiques 44(1), 1–18 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Neustupa.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neustupa, J. A Refinement of the Local Serrin-Type Regularity Criterion for a Suitable Weak Solution to the Navier–Stokes Equations. Arch Rational Mech Anal 214, 525–544 (2014). https://doi.org/10.1007/s00205-014-0761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0761-x

Keywords

Navigation