Skip to main content
Log in

Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the existence and concentration behaviors of positive solutions to the Kirchhoff type equations

$$- \varepsilon^2 M \left(\varepsilon^{2-N}\!\!\int_{\mathbf{R}^N}|\nabla u|^2\,\mathrm{d} x \right) \Delta u \!+\! V(x) u \!=\! f(u) \quad{\rm in}\ \mathbf{R}^N, \quad u \!\in\! H^1(\mathbf{R}^N), \ N \!\geqq\!1,$$

where M and V are continuous functions. Under suitable conditions on M and general conditions on f, we construct a family of positive solutions \({(u_\varepsilon)_{\varepsilon \in (0,\tilde{\varepsilon}]}}\) which concentrates at a local minimum of V after extracting a subsequence (ε k ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi S., Tanaka K.: Trudinger type inequalities in \({\mathbf{R}^N}\) and their best exponents. Proc. Amer. Math. Soc. 128(7), 2051–2057 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Almgren F.J., Lieb E.H.: Symmetric decreasing rearrangement is sometimes continuous. J. Amer. Math. Soc. 2(4), 683–773 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alves C.O., Corrêa F.J.S.A., Ma T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49(1), 85–93 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alves C.O., Figueiredo G.M.: Nonlinear perturbations of a periodic Kirchhoff equation in \({\mathbb{R}^N}\). Nonlinear Anal. 75(5), 2750–2759 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140(3), 285–300 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems on \({\mathbf{R}^N}\). In: Progress in Mathematics, vol. 240. Birkhäuser, Basel (2006)

  7. Ambrosetti A., Malchiodi A., Ni W.-M.: Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I. Comm. Math. Phys. 235(3), 427–466 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Azzollini A.: The elliptic Kirchhoff equation in \({\mathbb{R}^{N}}\) perturbed by a local nonlinearity. Differ. Integr. Equ. 25(5–6), 543–554 (2012)

    MATH  MathSciNet  Google Scholar 

  9. Azzollini, A.: A note on the elliptic Kirchhoff equation in \({\mathbb{R}^N}\) perturbed by a local nonlinearity. arXiv:1306.2064v1 [math.AP]

  10. Azzollini, A., d’Avenia, Pomponio, A.: A. Multiple critical points for a class of nonlinear functionals. Ann. Mat. Pura Appl. (4) 190(3), 507–523 (2011)

  11. Berestycki, H., Gallouët, T., Kavian, O.: Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297(5), 307–310 (1983)

  12. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82(4), 313–345 (1983)

    ADS  MATH  MathSciNet  Google Scholar 

  13. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rational Mech. Anal. 82(4), 347–375 (1983)

    ADS  MATH  MathSciNet  Google Scholar 

  14. Bony, J.M., Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A–B 265, A333–A336 (1967)

  15. Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979)

  16. Byeon J.: Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity. Trans. Amer. Math. Soc. 362(4), 1981–2001 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Byeon J., Jeanjean L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185(2), 185–200 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Byeon J., Jeanjean L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 190(3), 549–551 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Byeon J., Jeanjean L., Tanaka K.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases. Comm. Partial Differ. Equ. 33(4–6), 1113–1136 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Byeon J., Tanaka K.: Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential. J. Eur. Math. Soc. (JEMS) 15(5), 1859–1899 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Byeon, J., Tanaka, K.: Semiclassical Standing Waves with Clustering Peaks for Nonlinear Schrödinger Equations. Mem. Amer. Math. Soc. 229(1076) (2014)

  22. Byeon J., Wang Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Caldiroli P.: A new proof of the existence of homoclinic orbits for a class of autonomous second order Hamiltonian systems in \({\mathbf{R}^N}\). Math. Nachr. 187, 19–27 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. del Pino M., Felmer P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4(2), 121–137 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. del Pino M., Felmer P.L.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149(1), 245–265 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. del Pino M., Felmer P.L.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(2), 127–149 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. del Pino M., Felmer P.L.: Semi-classical states of nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324(1), 1–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Du, Y.: Order structure and topological methods in nonlinear partial differential equations, vol. 1. In: Maximum Principles and Applications. World Scientific, Singapore (2006)

  29. Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  30. Figueiredo G.M.: Existence of positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401(2), 706–713 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Figueiredo G.M., Santos Junior J.R.: Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differ. Integr. Equ. 25(9-10), 853–868 (2012)

    MATH  Google Scholar 

  32. Figueiredo, G.M., Santos Junior, J.R.: Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method. ESAIM Control Optim. Calc Var/E-First. 20(02), 389–415 (2014). doi:10.1051/cocv/2013068

  33. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  34. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. In: Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)

  35. He, Y., Li, G., Peng, S.: Concentrating Bound States for Kirchhoff type problems in \({\mathbb{R}^{3}}\) involving critical Sobolev exponents. Adv. Nonlinear Stud. 14, 441–468 (2014, to appear)

  36. He X., Zou W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}^3}\). J. Differ. Equ. 252(2), 1813–1834 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Hirata J., Ikoma N., Tanaka K.: Nonlinear scalar field equations in \({\mathbf{R}^N}\) : mountain pass and symmetric mountain pass approaches. Topol. Methods Nonlinear Anal. 35(2), 253–276 (2010)

    MATH  MathSciNet  Google Scholar 

  38. Ikoma N.: On radial solutions of inhomogeneous nonlinear scalar field equations. J. Math. Anal. Appl. 386(2), 744–762 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ikoma N., Tanaka K.: A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 40(3-4), 449–480 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Jeanjean L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  41. Jeanjean L., Tanaka K.: A remark on least energy solutions in \({\mathbf{R}^N}\). Proc. Amer. Math. Soc. 131(8), 2399–2408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Jeanjean L., Tanaka K.: A note on a mountain pass characterization of least energy solutions. Adv. Nonlinear Stud. 3(4), 445–455 (2003)

    MATH  MathSciNet  Google Scholar 

  43. Jeanjean L., Tanaka K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differ. Equ. 21(3), 287–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kang, X., Wei, J.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differential Equations 5(7-9), 899–928 (2000)

  45. Kirchhoff, G.: Mechanik, Teubner, Leipzig (1883)

  46. Li, G., Ye, H.: Existence of positive solutions for nonlinear Kirchhoff type problems in \({\mathbb{R}^3}\) with critical Sobolev exponent and sign-changing nonlinearities. Math. Methods Appl. Sci. (2014). doi:10.1002/mma.3000

  47. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}^3}\). J. Differ. Equ. (2014). doi:10.1016/j.jde.2014.04.011

  48. Li Y.: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 26, 955–980 (1997)

    Google Scholar 

  49. Li Y., Li F., Shi J.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253(7), 2285–2294 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Liang Z., Li F., Shi J.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann. I.H. Poincaré-AN 31(1), 155–167 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Lions, J.-L.: On some questions in boundary value problems of mathematical physics. In: Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), North-Holland Math. Stud., vol. 30, pp. 284–346. North-Holland, Amsterdam-New York (1978)

  52. Lions P.-L.: A remark on Bony maximum principle. Proc. Amer. Math. Soc. 88(3), 503–508 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  53. Ma, T.F.: Remarks on an elliptic equation of Kirchhoff type. Nonlinear Anal. 63(5–7), e1967–e1977 (2005)

  54. Oh, Y.-G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V) a . Comm. Partial Differ. Equ. 13(12), 1499–1519 (1988)

  55. Oh, Y.-G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V) a . Comm. Partial Differ. Equ. 14(6), 833–834 (1989)

  56. Pohozaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. (N.S.) 96 (138), 152–166, 168 (1975)

  57. Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  58. Rabinowitz P.H.: Periodic and heteroclinic orbits for a periodic Hamiltonian system. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(5), 331–346 (1989)

    MATH  MathSciNet  Google Scholar 

  59. Rabinowitz P.H., Tanaka K.: Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206(3), 473–499 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  60. Strauss W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55(2), 149–162 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Trudinger N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721–747 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  62. Wang J., Tian L., Xu J., Zhang F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ, Equ. 253(7), 2314–2351 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Wang X.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153(2), 229–244 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Wang X., Zeng B.: On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J. Math. Anal. 28(3), 633–655 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  65. Wu X.: Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \({\mathbf{R}^N}\). Nonlinear Anal. Real World Appl. 12(2), 1278–1287 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Ikoma.

Additional information

Communicated by P. Rabinowitz

Giovany M. Figueiredo: Supported by PROCAD/CASADINHO: 552101/2011-7, CNPq/PQ 301242/2011-9 and CNPQ/CSF 200237/2012-8.

Norihisa Ikoma: Partially supported by JSPS Research Fellowships 24-2259.

João R. Santos Júnior: Partially supported by CAPES - Brazil - 7155123/2012-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, G.M., Ikoma, N. & Santos Júnior, J.R. Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities. Arch Rational Mech Anal 213, 931–979 (2014). https://doi.org/10.1007/s00205-014-0747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0747-8

Keywords

Navigation