Abstract
We derive continuous dependence estimates for weak entropy solutions of degenerate parabolic equations with nonlinear fractional diffusion. The diffusion term involves the fractional Laplace operator, \({\triangle^{\alpha/2}}\) for \({\alpha \in (0,2)}\). Our results are quantitative and we exhibit an example for which they are optimal. We cover the dependence on the nonlinearities, and for the first time, the Lipschitz dependence on α in the BV-framework. The former estimate (dependence on nonlinearity) is robust in the sense that it is stable in the limits \({\alpha \downarrow 0}\) and \({\alpha \uparrow 2}\). In the limit \({\alpha \uparrow 2}\), \({\triangle^{\alpha/2}}\) converges to the usual Laplacian, and we show rigorously that we recover the optimal continuous dependence result of Cockburn and Gripenberg (J Differ Equ 151(2):231–251, 1999) for local degenerate parabolic equations (thus providing an alternative proof).
This is a preview of subscription content, access via your institution.
References
Adams, R.A.: Sobolev Spaces. Academic Press, (1975)
Alibaud N.: Entropy formulation for fractal conservation laws. J. Evol. Equ. 7(1), 145–175 (2007)
Alibaud, N., Andreianov, B.: Non-uniqueness of weak solutions for the fractal Burgers equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(4), 997–1016 (2010)
Alibaud N., Cifani S., Jakobsen E.R.: Continuous dependence estimates for nonlinear fractional convection-diffusion equations. SIAM J. Math. Anal. 44(2), 603–632 (2012)
Alibaud, N., Droniou, J., Vovelle, J.: Occurence and non-appearance of shocks in fractal Burgers equation. J. Hyperb. Differ. Equ. 4(3), 479–499 (2007)
Andreianov N., Bendahmane M., Karlsen K., Ouaro S.: Well-posedness results for triply nonlinear degenerate parabolic equations. J. Differ. Equ. 247(1), 277–302 (2009)
Bénilan, P., Crandall, M.G.: The continuous dependence on φ of solutions of \({u_t - \triangle \varphi(u)=0}\). Indiana Univ. Math. J. 30(2), 161–177 (1981)
Biler P., Funaki T., Woyczyński W.: Fractal Burgers Equations. J. Differ. Equ. 148, 9–46 (1998)
Biler, P., Karch, G., Imbert, C.: Fractal porous medium equation. C. R. Acad. Sci. Paris, Ser. I 349, 641–645 (2011)
Biler, P., Karch, G., Monneau, R.: A nonlinear diffusion of dislocation density and self-similar solutions. Commun. Math. Physics 294, 145–168 (2010)
Bouchut, F., Perthame, B.: Kružkov’s estimates for scalar conservation laws revisited. Trans. Am. Math. Soc. 7, 2847–2870 (1998)
Brézis, H., Crandall, M.G.: Uniqueness of solutions of the initial–value problem for \({u_t-\triangle \varphi(u)=0}\). J. Math. Pures Appl. (9) 58(2), 153–163 (1979)
Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro–differential equations. Comm. Pure Appl. Math. 62(5), 597–638 (2009)
Caffarelli, L., Silvestre, L.: The Evans-Krylov theorem for nonlocal fully nonlinear equations. Ann. Math. (2) 174(2), 1163–1187 (2011)
Caffarelli, L., Vázquez, J.-L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202(2), 537–565 (2011)
Carrillo, J.: Entropy Solutions for nonlinear Degenerate Problems. Arch. Ration. Mech. Anal. 147(4), 269–361 (1999)
Chan, C.H., Czubak, M.: Regularity of solutions for the critical N-dimensional Burgers equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 471–501 (2010)
Chan, C.H., Czubak, M., Silvestre, L.: Eventual regularization of the slightly supercritical fractional Burgers equation. Discret. Contin. Dyn. Syst. 27(2):847–861 (2010)
Chen, G., Karlsen, K.H.: Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Commun. Pure Appl. Anal. 4(2), 241–266 (2005)
Chen, G., Karlsen, K.H.: L 1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans. Am. Math. Soc. 358(3), 937–963 (2006)
Cifani, S., Jakobsen, E.R.: Entropy formulation for degenerate fractional order convection-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(3), 413–441 (2011)
Cifani, S., Jakobsen, E.R.: On numerical methods and error estimates for degenerate fractional convection-diffusion equations. Numer. Math. online first November (2013). doi:10.1007/s00211-013-0590-0
Clavin, P.: Instabilities and Nonlinear Patterns of Overdriven Detonations in Gases. Nonlinear PDE’s in Condensed Matter and Reactive Flows. Kluwer, Dordrecht, 49–97, (2002)
Cockburn, B., Gripenberg, G.: Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differ. Equ. 151(2), 231–251 (1999)
Cockburn, B., Gripenberg, G., Londen, S.-O.: On convergence of entropy solutions to a single conservation law. J. Differ. Equ. 128(1), 206–251 (1996)
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, (2004)
Dafermos, C.M.: Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33–41 (1972)
Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin, (2005)
de Pablo, A., Quiros, F., Rodriguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)
de Pablo, A., Quiros, F., Rodriguez, A., Vázquez, J.L.: A general fractional porous medium equation. Comm. Pure Appl. Math. 65(9), 1242–1284 (2012)
de Pablo, A., Quiros, F., Rodriguez, A., Vázquez, J.L.: Classical solutions for a logarithmic fractional diffusion equation. J. Math. Pures Appl. (9) (to appear)
DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New-York, (1993)
Droniou, J.: Vanishing non-local regularization of a scalar conservation law. Electron. J. Differ. Equ. 2003(117), 1–20 (2003)
Droniou, J., Gallouët, T., Vovelle, J.: Global solution and smoothing effect for a nonlocal regularization of a hyperbolic equation. J. Evol. Equ. 4(3), 479–499 (2003)
Droniou, J., Imbert, C.: Fractal first order partial differential equations. Arch. Ration. Mech. Anal. 182(2), 299–331 (2006)
Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences, 152. Springer, Berlin, (2007)
Imbert, C.: A non-local regularization of first order Hamilton-Jacobi equations. J. Differ. Equ. 211(1), 214–246 (2005)
Jakobsen, E.R., Karlsen, K.H.: Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differ. Equ. 212(2), 278–318 (2005)
Jakubowski, V.G., Wittbold, P.: On a nonlinear elliptic/parabolic integro-differential equation with L 1-data. J. Differ. Equ. 197(2), 427–445 (2003)
Karlsen, K.H., Risebro, N.H.: On the uniqueness and stability of entropy solutions of non- linear degenerate parabolic equations with rough coefficients. Discret. Contin. Dyn. Syst. 9(5), 1081–1104 (2003)
Karlsen, K.H., Ulusoy, S.: Stability of entropy solutions for Lévy mixed hyperbolic parabolic equations. Electron. J. Differ. Equ. 2011(116), 1–23 (2011)
Kassmann, M., Schwab, R.W.: Regularity results for nonlocal parabolic equations. Riv. Math. Univ. Parma (N.S.) 5(1) (2014)
Kiselev, A., Nazarov, F., Shterenberg, R.: Blow up and regularity for fractal Burgers equation. Dyn. PDE 5(3), 211–240 (2008)
Kruzhkov, S.N.: First order quasilinear equations with several independent variables. Math. Sb. (N.S.) 81(123), 228–255 (1970)
Kuznetsov, N.N.: Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR. Comput. Math. Math. Phys. Dokl. 16(6), 105–119 (1976)
Landkof, N.S.: Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, 180. Springer, New York, (1972)
Lions, P.-L., Perthame, B., Tadmor, E.: A kinetic formulation of multidimensional scalar conservation laws and related local equations. J. Am. Math. Soc. 7, 169–191 (1994)
Lucier, B.J.: A moving mesh numerical method for hyperbolic conservation laws. Math. Comp. 46, 59–69 (1980)
Lukkari, T.: Stability of solutions to nonlinear diffusion equations. arXiv:1206.2492 [math.AP]
Rohde, C., Yong, W.-A.: The nonrelativistic limit in radiation hydrodynamics. I. Weak entropy solutions for a model problem. J. Differ. Equ. 234(1), 91–109 (2007)
Rosenau P.: Extending hydrodynamics via the regularization of the Chapman-Enskog expansion. Phys. Rev. A 40, 7193–7196 (1989)
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, (1999)
Sayah, A.: Equations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels, Parties I et II. Comm P.D.E. 16(6–7), 1057–1093 (1991)
Schochet, S., Tadmor, E.: Regularized Chapman-Enskog expansion for scalar conservation laws. Arch. Ration. Mech. Anal. 119, 95–107 (1992)
Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, (2007)
Woyczyński, W.: Lévy processes in the physical sciences. Lévy process. Birkhäuser, Boston, 241–266, (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Bressan
This research was supported by the Research Council of Norway (NFR) projects DIMMA and “Integro-PDEs: Numerical methods, Analysis, and Applications to Finance,” and by the “French ANR project CoToCoLa, no. ANR-11-JS01-006-01.”
Rights and permissions
About this article
Cite this article
Alibaud, N., Cifani, S. & Jakobsen, E.R. Optimal Continuous Dependence Estimates for Fractional Degenerate Parabolic Equations. Arch Rational Mech Anal 213, 705–762 (2014). https://doi.org/10.1007/s00205-014-0737-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-014-0737-x
Keywords
- Continuous Dependence
- Entropy Solution
- Entropy Inequality
- Degenerate Parabolic Equation
- Weak Entropy Solution