Abstract
In this paper, we study the local behaviors of nonnegative local solutions of fractional order semi-linear equations \({(-\Delta )^\sigma u=u^{\frac{n+2\sigma}{n-2\sigma}}}\) with an isolated singularity, where \({\sigma\in (0,1)}\). We prove that all the solutions are asymptotically radially symmetric. When σ = 1, these have been proved by Caffarelli et al. (Comm Pure Appl Math 42:271–297, 1989).
This is a preview of subscription content, access via your institution.
References
Berestycki H., Nirenberg L.: On the method of moving planes and the sliding method. Bull. Braz. Math. Soc. 22, 1–37 (1991)
Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire (To appear). arXiv:1012.0867
Caffarelli L., Gidas B., Spruck J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42, 271–297 (1989)
Caffarelli L., Silvestre L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32, 1245–1260 (2007)
Cao D., Li Y.Y.: Results on positive solutions of elliptic equations with a critical Hardy-Sobolev operator. Methods Appl. Anal. 15, 81–95 (2008)
Chang S.-Y., González M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)
Chen C.C., Lin C.S.: Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent. Duke Math. J. 78(2), 315–334 (1995)
Chen W., Li C., Ou B.: Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59, 330–343 (2006)
González M., Mazzeo R., Sire Y.: Singular solutions of fractional order conformal Laplacians. J. Geom. Anal. 22, 845–863 (2012)
González, M., Qing, J.: Fractional conformal Laplacians and fractional Yamabe problems. arXiv:1012.0579
Graham C.R., Zworski M.: Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)
Han Z.-C., Li Y.Y., Teixeira E.V.: Asymptotic behavior of solutions to the σ k -Yamabe equation near isolated singularities. Invent. Math. 182(3), 635–684 (2010)
Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. (JEMS) (To appear). arXiv:1111.1332
Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part II: existence of solutions. Preprint.
Jin, T., Xiong, J.: A fractional Yamabe flow and some applications. J. Reine Angew. Math. doi:10.1515/crelle-2012-0110.
Korevaar N., Mazzeo R., Pacard F., Schoen R.: Refined asymptotics for constant scalar curvature metrics with isolated singularities. Invent. Math. 135(2), 233–272 (1999)
Li Y.Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6, 153–180 (2004)
Li Y.Y.: Conformally invariant fully nonlinear elliptic equations and isolated singularities. J. Funct. Anal. 233, 380–425 (2006)
Li A., Li Y.Y.: On some conformally invariant fully nonlinear equations. II. Liouville, Harnack and Yamabe. Acta Math. 195, 117–154 (2005)
Li Y.Y., Zhang L.: Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations. J. Anal. Math. 90, 27–87 (2003)
Li Y.Y., Zhu M.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80, 383–418 (2003)
Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. (2) 118, 349–374 (1983)
Schoen, R.: Courses at Stanford University, 1988, and New York University, 1989.
Tan J., Xiong J.: A Harnack inequality for fractional Laplace equations with lower order terms. Discrete Contin. Dyn. Syst. 31, 975–983 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by F. Lin
Rights and permissions
About this article
Cite this article
Caffarelli, L., Jin, T., Sire, Y. et al. Local Analysis of Solutions of Fractional Semi-Linear Elliptic Equations with Isolated Singularities. Arch Rational Mech Anal 213, 245–268 (2014). https://doi.org/10.1007/s00205-014-0722-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-014-0722-4