Abstract
For systems of coupled differential equations on a sequence of W-random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limit. These results combined with the analysis of nonlocally coupled deterministic networks in Medvedev (The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints, 2013) justify the continuum (thermodynamic) limit for a large class of coupled dynamical systems on convergent families of graphs.
This is a preview of subscription content, access via your institution.
Change history
05 November 2018
We correct and improve the main result in Medvedev, ?The nonlinear heat equation on W-random graphs?, Arch. Rational Mech. Anal., 212(3), pp. 781?803.
References
Abrams D.M., Strogatz S.H.: Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 16(1), 21–37 (2006)
Billingsley P.: Probability and Measure. Willey, New York (1995)
Bollobas B.: Random Graph. Cambridge University Press, Cambridge (2001)
Borgs C., Chayes J., Lovász L., Sós V., Vesztergombi K.: Limits of randomly grown graph sequences. Eur. J. Comb. 32, 985–999 (2011)
Borgs C., Chayes J.T., Lovász L., Sós V.T., Vesztergombi K.: Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math. 219(6), 1801–1851 (2008)
Dorfler F., Bullo F.: Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. SICON 50(3), 1616–1642 (2012)
Ermentrout G.B., Kopell N.: Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195–217 (1991)
Girnyk T., Hasler M., Maistrenko Y.: Multistability of twisted states in non-locally coupled Kuramoto-type models. Chaos 22, 013114 (2012)
Hoppensteadt F.C., Izhikevich E.M.: Weakly Connected Neural Networks. Springer, Berlin (1997)
Janson S., Luczak T., Rucinski A.: Random Graphs. Wiley, Chichester (2011)
Kuramoto Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)
Kuramoto Y.: Cooperative dynamics of oscillator community. Prog. Theor. Phys. Suppl. 79, 223–240 (1984)
Kuramoto Y.: Scaling behavior of turbulent oscillators with nonlocal interaction. Prog. Theor. Phys. 94, 321–330 (1995)
Kuramoto Y., Battogtokh D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380–385 (2002)
Laing C.R.: Chimera states in heterogeneous networks. Chaos 19, 013113 (2009)
Li R.D., Erneux T.: Preferential instability in arrays of coupled lasers. Phys. Rev. A 46, 4252–4260 (1992)
Lovász L.: Large Networks and Graph Limits. American Mathematical Society, Providence (2012)
Lovász L., Szegedy B.: Limits of dense graph sequences. J. Combin. Theory Ser. B 96(6), 933–957 (2006)
Medvedev G.S.: Stochastic stability of continuous time consensus protocols. SIAM J. Control Optim. 50(4), 1859–1885 (2012)
Medvedev, G.S.: Small-world networks of Kuramoto oscillators. ArXiv e-prints (2013)
Medvedev, G.S.: The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints (2013)
Medvedev G.S., Zhuravytska S.: The geometry of spontaneous spiking in neuronal networks. J. Nonlinear Sci. 22, 689–725 (2012)
Monasson R.: Diffusion, localization, and dispersion relations on ‘small-world’ lattices. Eur. Phys. J. B 12, 555–567 (1999)
Newman N.E.J., Watts D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263, 341–346 (1999)
Omelchenko I., Hővel P., Maistrenko Y., Schőll E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011)
Omelchenko I., RiemenschneiderB., Hövel P., Maistrenko Y., Schöll E.: Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E 85, 026212 (2012)
Omel’chenko O.E., Maistrenko Y.L., Tass P.A.: Chimera states: the natural link between coherence and incoherence. Phys. Rev. Lett. 100, 044105 (2008)
Omelchenko O.E., Wolfrum M., Maistrenko Y.: Chimera states as chaotic spatiotemporal patterns. Phys. Rev. E 81, 065201 (2010)
Ott E., Antonsen T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008)
Phillips J.R., van der Zant H.S.J., White J., Orlando T.P.: Influence of induced magnetic fields on the static properties of Josephson-junction arrays. Phys. Rev. B 47, 5219–5229 (1993)
Shima S., Kuramoto Y.: Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E 69(3), 036213 (2004)
Strogatz S.: Sync. How order emerges from chaos in the universe, nature (2003)
Tanaka D., Kuramoto Y.: Complex Ginzburg–Landau equation with nonlocal coupling. Phys. Rev. E 68, 026219 (2003)
Watts D.J., Strogatz S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)
Wiley, D.A., Strogatz S.H., Girvan M.: The size of the sync basin. Chaos 16(1), 015103, 8 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by W. E
Rights and permissions
About this article
Cite this article
Medvedev, G.S. The Nonlinear Heat Equation on W-Random Graphs. Arch Rational Mech Anal 212, 781–803 (2014). https://doi.org/10.1007/s00205-013-0706-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-013-0706-9