Skip to main content

The Nonlinear Heat Equation on W-Random Graphs

A Correction to this article was published on 05 November 2018

This article has been updated


For systems of coupled differential equations on a sequence of W-random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limit. These results combined with the analysis of nonlocally coupled deterministic networks in Medvedev (The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints, 2013) justify the continuum (thermodynamic) limit for a large class of coupled dynamical systems on convergent families of graphs.

This is a preview of subscription content, access via your institution.

Change history

  • 05 November 2018

    We correct and improve the main result in Medvedev, ?The nonlinear heat equation on W-random graphs?, Arch. Rational Mech. Anal., 212(3), pp. 781?803.


  1. Abrams D.M., Strogatz S.H.: Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 16(1), 21–37 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Billingsley P.: Probability and Measure. Willey, New York (1995)

    MATH  Google Scholar 

  3. Bollobas B.: Random Graph. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  4. Borgs C., Chayes J., Lovász L., Sós V., Vesztergombi K.: Limits of randomly grown graph sequences. Eur. J. Comb. 32, 985–999 (2011)

    Article  MATH  Google Scholar 

  5. Borgs C., Chayes J.T., Lovász L., Sós V.T., Vesztergombi K.: Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math. 219(6), 1801–1851 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dorfler F., Bullo F.: Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators. SICON 50(3), 1616–1642 (2012)

    Article  MathSciNet  Google Scholar 

  7. Ermentrout G.B., Kopell N.: Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195–217 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Girnyk T., Hasler M., Maistrenko Y.: Multistability of twisted states in non-locally coupled Kuramoto-type models. Chaos 22, 013114 (2012)

    ADS  Article  Google Scholar 

  9. Hoppensteadt F.C., Izhikevich E.M.: Weakly Connected Neural Networks. Springer, Berlin (1997)

    Book  Google Scholar 

  10. Janson S., Luczak T., Rucinski A.: Random Graphs. Wiley, Chichester (2011)

    Google Scholar 

  11. Kuramoto Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  12. Kuramoto Y.: Cooperative dynamics of oscillator community. Prog. Theor. Phys. Suppl. 79, 223–240 (1984)

    ADS  Article  Google Scholar 

  13. Kuramoto Y.: Scaling behavior of turbulent oscillators with nonlocal interaction. Prog. Theor. Phys. 94, 321–330 (1995)

    ADS  Article  Google Scholar 

  14. Kuramoto Y., Battogtokh D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380–385 (2002)

    Google Scholar 

  15. Laing C.R.: Chimera states in heterogeneous networks. Chaos 19, 013113 (2009)

    ADS  Article  MathSciNet  Google Scholar 

  16. Li R.D., Erneux T.: Preferential instability in arrays of coupled lasers. Phys. Rev. A 46, 4252–4260 (1992)

    ADS  Article  Google Scholar 

  17. Lovász L.: Large Networks and Graph Limits. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  18. Lovász L., Szegedy B.: Limits of dense graph sequences. J. Combin. Theory Ser. B 96(6), 933–957 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Medvedev G.S.: Stochastic stability of continuous time consensus protocols. SIAM J. Control Optim. 50(4), 1859–1885 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Medvedev, G.S.: Small-world networks of Kuramoto oscillators. ArXiv e-prints (2013)

  21. Medvedev, G.S.: The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints (2013)

  22. Medvedev G.S., Zhuravytska S.: The geometry of spontaneous spiking in neuronal networks. J. Nonlinear Sci. 22, 689–725 (2012)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  23. Monasson R.: Diffusion, localization, and dispersion relations on ‘small-world’ lattices. Eur. Phys. J. B 12, 555–567 (1999)

    ADS  Article  Google Scholar 

  24. Newman N.E.J., Watts D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263, 341–346 (1999)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  25. Omelchenko I., Hővel P., Maistrenko Y., Schőll E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011)

    ADS  Article  Google Scholar 

  26. Omelchenko I., RiemenschneiderB., Hövel P., Maistrenko Y., Schöll E.: Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E 85, 026212 (2012)

    ADS  Article  Google Scholar 

  27. Omel’chenko O.E., Maistrenko Y.L., Tass P.A.: Chimera states: the natural link between coherence and incoherence. Phys. Rev. Lett. 100, 044105 (2008)

    ADS  Article  Google Scholar 

  28. Omelchenko O.E., Wolfrum M., Maistrenko Y.: Chimera states as chaotic spatiotemporal patterns. Phys. Rev. E 81, 065201 (2010)

    ADS  Article  MathSciNet  Google Scholar 

  29. Ott E., Antonsen T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008)

    ADS  Article  MathSciNet  Google Scholar 

  30. Phillips J.R., van der Zant H.S.J., White J., Orlando T.P.: Influence of induced magnetic fields on the static properties of Josephson-junction arrays. Phys. Rev. B 47, 5219–5229 (1993)

    ADS  Article  Google Scholar 

  31. Shima S., Kuramoto Y.: Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E 69(3), 036213 (2004)

    ADS  Article  Google Scholar 

  32. Strogatz S.: Sync. How order emerges from chaos in the universe, nature (2003)

    Google Scholar 

  33. Tanaka D., Kuramoto Y.: Complex Ginzburg–Landau equation with nonlocal coupling. Phys. Rev. E 68, 026219 (2003)

    ADS  Article  Google Scholar 

  34. Watts D.J., Strogatz S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    ADS  Article  Google Scholar 

  35. Wiley, D.A., Strogatz S.H., Girvan M.: The size of the sync basin. Chaos 16(1), 015103, 8 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Georgi S. Medvedev.

Additional information

Communicated by W. E

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Medvedev, G.S. The Nonlinear Heat Equation on W-Random Graphs. Arch Rational Mech Anal 212, 781–803 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Central Limit Theorem
  • Random Graph
  • Continuum Limit
  • Dense Graph
  • Graph Sequence