Skip to main content
Log in

The Linearized 2D Inviscid Shallow Water Equations in a Rectangle: Boundary Conditions and Well-Posedness

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the linearized 2D inviscid shallow water equations in a rectangle. A set of boundary conditions is proposed which make these equations well-posed. Several different cases occur depending on the relative values of the reference velocities (u 0, v 0) and reference height \({\phi_0}\) (sub- or super-critical flow at each part of the boundary).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audusse E., Bristeau M.-O.: Transport of pollutant in shallow water: a two time steps kinetic method. M2AN Math. Model. Numer. Anal. 37(2), 389–416 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Audusse E., Bouchut F., Bristeau M.-O., Klein R., Perthame B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Audusse E., Bristeau M.O., Perthame B., Sainte-Marie J.: A multilayer saint-venant system with mass exchanges for shallow water flows. derivation and numerical validation. M2AN Math. Model. Numer. Anal. 45(1), 169–200 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bristeau, M.-O., Coussin, B.: Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes, No. RR-4282, Projet M3N

  5. Bresch D., Desjardins B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238(1–2), 211–223 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  6. Bresch, D., Desjardins, B., Métivier, G.: Recent Mathematical Results and Open Problems About Shallow Water Equations, Analysis and Simulation of Fluid Dynamics. Adv. Math. Fluid Mech., Birkhäuser, Basel, pp. 15–31 (2007)

  7. Benzoni-Gavage S., Serre D.: Multi-Dimensional Hyperbolic Partial Differential Equations. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  8. Bresch D., Noble P.: Mathematical justification of a shallow water model. Methods Appl. Anal. 14(2), 87–117 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Bernardi C., Pironneau O.: On the shallow water equations at low Reynolds number. Commun. Partial Differ. Equ. 16(1), 59–104 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bousquet, A., Petcu, M., Shiue, M.-C., Temam, R., Tribbia, J.: Boundary conditions for limitied area models. Commun. Comput. Phys. (2013, to appear)

  11. Bresch D., Renardy M.: Well-posedness of two-layer shallow-water flow between two horizontal rigid plates. Nonlinearity 24(4), 1081–1088 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Bresch, D.: Shallow-water equations and related topics, Handbook of differential equations: evolutionary equations, vol. V. Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, pp. 1–104, 2009

  13. Courant, R., Friedrichs, K.-O.: Supersonic Flow and Shock Waves. Interscience Publishers, Inc., New York, 1948, xvi+464 pp

  14. Chen Q., Shiue M.-C., Temam R.: The barotropic mode for the primitive equations, Speical issue in momory of David Gottlieb. J. Sci. Comput. 45, 167–199 (2010)

    Article  MathSciNet  Google Scholar 

  15. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, Pitman, Boston, 1985

  16. Örmander L.H.: L 2 estimates and existence theorems for the \({\bar\partial}\) operator. Acta Math. 113, 89–152 (1965)

    Article  MathSciNet  Google Scholar 

  17. Huang A., Petcu M., Temam R.: The one-dimensional supercritical shallow-water equations with topography. Ann. Univ. Bucharest (Mathematical Series) 2(LX), 63–82 (2011)

    MathSciNet  Google Scholar 

  18. Huang, A., Petcu, M., Temam, R.: The nonlinear 2d supercritical inviscid shallow water equations in a rectangle (submitted)

  19. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. American Mathematical Society, Providence, 1974 (Third printing of the revised edition of 1957, AMS Colloquium Publications, vol. XXXI)

  20. Huang, A., Temam, R.: The nonlinear 2d subcritical inviscid shallow water equations with periodicity in one direction (submitted)

  21. Kreiss H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–298 (1970)

    Article  MathSciNet  Google Scholar 

  22. Kojima K., Taniguchi M.: Mixed problem for hyperbolic equations in a domain with a corner. Funkcialaj Ekvacioj 23, 171–195 (1980)

    MATH  MathSciNet  Google Scholar 

  23. Kanayama, H., Ushijima, T.: On the viscous shallow-water equations. I. Derivation and conservation laws. Mem. Numer. Math. 8–9, 39–64 (1982)

    Google Scholar 

  24. Kanayama H., Ushijima T.: On the viscous shallow-water equations. II. A linearized system. Bull. Univ. Electro Commun. 1(2), 347–355 (1988)

    MathSciNet  Google Scholar 

  25. Kanayama H., Ushijima T.: On the viscous shallow-water equations. III. A finite element scheme. Bull. Univ. Electro Commun. 2(1), 47–62 (1989)

    MathSciNet  Google Scholar 

  26. Orenga P.: Un théorème d’existence de solutions d’un probléme de shallow water. Arch. Ration. Mech. Anal. 130, 183–204 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Oliger J., SundstrÖm A.: Theoretical and practical aspects of some initial-boundary value problems in fluid dynamics. SIAM J. Appl. Math. 35(3), 419–446 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  28. Osher S.: Initial-boundary value problems for hyperbolic systems in regions with corners. I. Trans. Am. Math. Soc. 176, 141–165 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  29. Osher S.: Initial-boundary value problems for hyperbolic systems in regions with corners. II. Trans. Am. Math. Soc. 198, 155–175 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  30. Petcu, M., Temam, R.: The one-dimensional shallow water equations with transparent boundary conditions. Math. Methods Appl. Sci. (2011). doi:10.1002/mma.1482

  31. Rauch J.B., Massey F.J. III: Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Am. Math. Soc. 189, 303–318 (1974)

    MATH  MathSciNet  Google Scholar 

  32. Rousseau A., Temam R., Tribbia J.: The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case. J. Math. Pures Appl. 89, 297–319 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rudin, W.: Functional analysis, 2nd edn. International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991

  34. Shiue, M.-C., Laminie, J., Temam, R., Tribbia, J.: Boundary value problems for the shallow water equations with topography. J. Geophys. Res. Oceans 116, C02015 (2011)

  35. Taniguchi M.: Mixed problem for wave equation in the domain with a corner. Funkcialaj Ekvacioj 21, 249–259 (1978)

    MATH  MathSciNet  Google Scholar 

  36. Temam R., Tribbia J.: Open boundary conditions for the primitive and Boussinesq equations. J. Atmos. Sci. 60(21), 2647–2660 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. Ushijima T.: A semigroup theoretical analysis of a finite element method for a linearized viscous shallow-water system. Publ. Res. Inst. Math. Sci. 19(3), 1305–1328 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  38. Warner T., Peterson R., Treadon R.: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Am. Meteorol. Soc. 78, 2599–2617 (1997)

    Article  ADS  Google Scholar 

  39. Yosida K.: Functional Analysis, 6th edn. Springer, Berlin (1980)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Temam.

Additional information

Communicated by C. Le Bris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, A., Temam, R. The Linearized 2D Inviscid Shallow Water Equations in a Rectangle: Boundary Conditions and Well-Posedness. Arch Rational Mech Anal 211, 1027–1063 (2014). https://doi.org/10.1007/s00205-013-0702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0702-0

Keywords

Navigation