Archive for Rational Mechanics and Analysis

, Volume 210, Issue 1, pp 165–176 | Cite as

Quasiperiodic Collision Solutions in the Spatial Isosceles Three-Body Problem with Rotating Axis of Symmetry



We consider the spatial isosceles Newtonian three-body problem, with one particle on a fixed plane, and the other two particles (with equal masses) located symmetrically with respect to this plane. Using variational methods, we find a one-parameter family of collision solutions for this system. All these solutions are periodic in a rotating frame.


Polar Angle Equal Mass Schwarz Inequality Triple Collision Double Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albouy A., Chenciner A.: Le probléme des n corps et les distances mutuelles. Invent. Math. 131, 151–184 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Chenciner A., Féjoz J., Montgomery R.: Rotating eights: I.The three Γi families. Nonlinearity 18, 1407–1424 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Fathi, A.: The Weak KAM Theorem in Lagrangian Dynamics, 2013 (in preparation)Google Scholar
  4. 4.
    Gordon W.B.: A minimizing property of Keplerian orbits. Am. J. Math. 99(15), 961–971 (1977)MATHCrossRefGoogle Scholar
  5. 5.
    Szebehely V.: Theory of Orbits. Academic Press, New York (1967)Google Scholar
  6. 6.
    Wintner A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941)Google Scholar
  7. 7.
    Young L.C.: (1969), Lectures on the Calculus of Variations and Optimal Control Theory. AMS Chelsea Publishing, Providence (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal de SergipeSergipeBrazil
  2. 2.Laboratoire d’Analyse non linéaire et gémétrieUniversité d’AvignonAvignonFrance
  3. 3.Departamento de Matemática, Facultad de CienciasUniversidad del Bío-BíoConcepción-VIII RegiónChile

Personalised recommendations