Skip to main content
Log in

Dimensionality of Local Minimizers of the Interaction Energy

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript


In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive–attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008

  2. Balagué, D., Carrillo, J.A., Laurent, T., Raoul, G.: Nonlocal interactions by repulsive–attractive potentials: radial ins/stability. Physica D (2013, to appear)

  3. Balagué, D., Carrillo, J.A., Yao, Y.: Confinement for repulsive–attractive kernels. Preprint

  4. Bernoff, A.J., Topaz, C.M.: A primer of swarm equilibria. SIAM J. Appl. Dyn. Syst. 10(1), 212–250 (2011)

    Google Scholar 

  5. Bertozzi A., Carrillo J.A., Laurent T.: Blowup in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22, 683–710 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bertozzi A., Garnett J., Laurent T.: Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. SIAM J. Math. Anal. 44, 651–681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertozzi A., Laurent T.: Finite-time blow-up of solutions of an aggregation equation in \({\mathbb{R}^n}\). Commun. Math. Phys. 274, 717–735 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertozzi A., Laurent T., Rosado J.: Lp theory for the multidimensional aggregation equation. Commun. Pure Appl. Math. 64(1), 45–83 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertozzi, A.L., Laurent, T., Léger, F.: Aggregation and spreading via the newtonian potential: the dynamics of patch solutions. Math. Models Methods Appl. Sci. 22(supp01), 1140005 (2012)

    Google Scholar 

  10. Carrillo J.A., Di Francesco M., Figalli A., Laurent T., Slepcev D.: Confinement in nonlocal interaction equations. Nonlinear Anal. 75(2), 550–558 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrillo J.A., Di Francesco M., Figalli A., Laurent T., Slepcev D.: Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156, 229–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carrillo J.A., McCann R.J., Villani C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana 19(3), 971–1018 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carrillo J.A., McCann R.J., Villani C.: Contractions in the 2-wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179, 217–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Orsogna M.R., Chuang Y., Bertozzi A., Chayes L.: Self-propelled particles with soft-core interactions: patterns, stability and collapse. Phys. Rev. Lett. 96, 104302 (2006)

    Article  ADS  Google Scholar 

  15. Doye J.P.K., Wales D.J., Berry R.S.: The effect of the range of the potential on the structures of clusters. J. Chem. Phys. 103, 4234–4249 (1995)

    Article  ADS  Google Scholar 

  16. Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken, 2003

  17. Fellner K., Raoul G.: Stable stationary states of non-local interaction equations. Math. Models Methods Appl. Sci. 20(12), 2267–2291 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fellner, K., Raoul, G.: Stability of stationary states of non-local equations with singular interaction potentials. Math. Comput. Model., 53(7-8):1436–1450, 2011

    Google Scholar 

  19. Fetecau R.C., Huang Y., Kolokolnikov T.: Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24(10), 2681–2716 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Givens C.R., Shortt R.M.: A class of Wasserstein metrics for probability distributions. Mich. Math. J. 31(2), 231–240 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hagan M.F., Chandler D.: Dynamic pathways for viral capsid assembly. Biophys. J. 91, 42–54 (2006)

    Article  ADS  Google Scholar 

  22. Kolokolnikov, T., Huang, Y., Pavlovski, M.: Singular patterns for an aggregation model with a confining potential. Physica D (in press)

  23. Kolokonikov T., Sun H., Uminsky D., B ertozzi A.: Stability of ring patterns arising from 2D particle interactions. Phys. Rev. E 84(1), 015203 (2011)

    Article  ADS  Google Scholar 

  24. Laurent T.: Local and global existence for an aggregation equation. Commun. Partial Differ. Equ. 32, 1941–1964 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge, 1995

  26. McCann R.J.: Stable rotating binary stars and fluid in a tube. Houst. J. Math. 32(2), 603–631 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Mogilner A., Edelstein-Keshet L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mogilner A., Edelstein-Keshet L., Bent L., Spiros A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47(4), 353–389 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Papadimitrakis, M.: Notes on classical potential theory. see link to web page, 2003

  30. Pérez, J., Ros, A.: Properly embedded minimal surfaces with finite total curvature. The Global Theory of Minimal Surfaces in Flat Spaces (Martina Franca, 1999). Lecture Notes in Mathematics, vol. 1775, Springer, Berlin, 15–66, 2002

  31. Raoul G.: Non-local interaction equations: stationary states and stability analysis. Differ. Integral Equ. 25(5–6), 417–440 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Rechtsman M.C., Stillinger F.H., Torquato S.: Optimized interactions for targeted self-assembly: application to a honeycomb lattice. Phys. Rev. Lett. 95(22), 228–301 (2005)

    Article  Google Scholar 

  33. Sun H., Uminsky D., Bertozzi A.L.: Stability and clustering of self-similar solutions of aggregation equations. J. Math. Phys. 53, 115610 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  34. Topaz C., Bernoff A., Logan S.S., Toolson W.: A model for rolling swarms of locusts. Eur. Phys. J. Spec. Top. 157, 93–109 (2008)

    Article  Google Scholar 

  35. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI, 2003

  36. von Brecht J., Uminsky D.: On soccer balls and linearized inverse statistical mechanics. J. Nonlinear Sci. 22(6), 935–959 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. von Brecht J., Uminsky D., Kolokolnikov T., Bertozzi A.: Predicting pattern formation in particle interactions. Math. Mod. Meth. Appl. Sci. 22, 1140002 (2012)

    Article  Google Scholar 

  38. Wales D.J.: Energy landscapes of clusters bound by short-ranged potentials. Chem. Eur. J. Chem. Phys. 11, 2491–2494 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. Balagué.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balagué, D., Carrillo, J.A., Laurent, T. et al. Dimensionality of Local Minimizers of the Interaction Energy. Arch Rational Mech Anal 209, 1055–1088 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: