Skip to main content
Log in

Resonance and Double Negative Behavior in Metamaterials

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A generic class of metamaterials is introduced and is shown to exhibit frequency dependent double negative effective properties. We develop a rigorous method for calculating the frequency intervals where either double negative or double positive effective properties appear and show how these intervals imply the existence of propagating Bloch waves inside sub-wavelength structures. The branches of the dispersion relation associated with Bloch modes are shown to be explicitly determined by the Dirichlet spectrum of the high dielectric phase and the generalized electrostatic spectra of the complement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alu, A., Engheta, N: Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles. Phys. Rev. B 78, 085112 (2008)

    Google Scholar 

  2. Adams, D.: Sobolev Spaces. Elsevier, Waltham, 2003

  3. Ammari H., Kang H., Lee H.: Asymptotic analysis of high-contrast phononic crystals and a criterion for the band-gap opening. Arch. Ration. Mech. Anal. 193, 679–714 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammari, H., Kang, H., Soussi, S., Zribi, H.: Layer potential techniques in spectral analysis. Part II: sensitivity analysis of spectral properties of high contrast band-gap materials. SIAM Multiscale Model. Simul. 5, 646–663 (2006)

    Google Scholar 

  5. Bergman D.J.: The dielectric constant of a simple cubic array of identical spheres. J. Phys. C 12, 4947–4960 (1979)

    Article  ADS  Google Scholar 

  6. Bohren, C.F., Huffman, D.H.: Absorption and Scattering of Light by Small Particles. Wiley, Weinheim, 2004

  7. Bouchitté, G., Bourel, C.: Homogenization of finite metallic fibers and 3D-effective permittivity tensor. Proc. SPIE 7029, 702914 (2008). doi:10.1117/12.794935

  8. Bouchitté, G., Schweizer, B.: Homogenization of Maxwell’s equations in a split ring geometry. SIAM Multiscale Model. Simul. 8(3), 717–750 (2010)

    Google Scholar 

  9. Bouchitté G., Felbacq D.: Negative refraction in periodic and random photonic crystals. New J. Phys. 7, 159 (2005)

    Article  Google Scholar 

  10. Bouchitté G., Felbacq D.: Homogenization near resonances and artificial magnetism from dielectrics. C. R. Acad. Sci. Paris I 399(5), 377–382 (2004)

    Article  Google Scholar 

  11. Chen Y., Lipton R.: Tunable double negative band structure from non-magnetic coated rods. New J. Phys. 12, 083010 (2010)

    Article  ADS  Google Scholar 

  12. Cherdantsev M.: Spectral convergence for high-contrast elliptic periodic problems with a defect via homogenization.. Mathematika 55, 29–57 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chern R.L., Felbacq D.: Artificial magnetism and anticrossing interaction in photonic crystals and split-ring structures. Phys. Rev. B 79(7), 075118 (2009)

    Article  ADS  Google Scholar 

  14. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York, 1998

  15. Dolling G., Enrich C., Wegener M., Soukoulis C.M., Linden S.: Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006)

    Article  ADS  Google Scholar 

  16. Felbacq D., Bouchitte G.: Homogenization of wire mesh photonic crystals embedded in a medium with a negative permeability. Phys. Rev. Lett. 94(18), 183902 (2005)

    Article  ADS  Google Scholar 

  17. Felbacq D., Guizal B., Bouchitte G., Bourel G.: Resonant homogenization of a dielectric metamaterial. Microw. Opt. Technol. Lett. 51(11), 2695–2701 (2009)

    Article  Google Scholar 

  18. Farhat M., Guenneau Enoch S., Movchan A.B.: Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonators. Phys. Rev. E 80(4), 046309 (2009)

    Article  ADS  Google Scholar 

  19. Figotin A. , Kuchment P.: Band-gap structure of the spectrum of periodic dielectric and acoustic media. I. Scalar model. SIAM J. Appl. Math. 56(1), 68–88 (1996)

    Article  MathSciNet  Google Scholar 

  20. Figotin A., Kuchment P.: Band-gap structure of the spectrum of periodic dielectric and acoustic media. II. 2D Photonic crystals. SIAM J. Appl. Math. 56(6), 1561–1620 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Figotin A., Kuchment P.: Spectral properties of classical waves in high contrast periodic media. SIAM J. Appl. Math. 58(2), 683–702 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Folland, G.: Introduction to Partial Differential Equations. Princeton University Press, Princeton, 1995

  23. Fortes, S.P., Lipton, R.P., Shipman, S.P.: Sub-wavelength plasmonic crystals: dispersion relations and effective properties. Proc. R. Soc. Lond. Ser. A Mat. (2009). doi:10.1098/rspa.2009.0542

  24. Fortes S.P., Lipton R.P., Shipman S.P.: Convergent power series for fields in positive or negative high-contrast periodic media. Commun. Partial Differ. Equ. 36(6), 1016–1043 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hempel R., Lienau K.: Spectral properties of periodic media in the large coupling limit. Commun. Partial Differ. Equ. 25, 1445–1470 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huangfu, J., Ran, L., Chen, H., Zhang, X., Chen, K., Grzegorczyk, T.M., Kong, J.A.: Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns. Appl. Phys. Lett. 84, 1537 (2004)

    Google Scholar 

  27. Huang K.C., Povinelli M.L., Joannopoulos J.D.: Negative effective permeability in polaritonic photonic crystals. Appl. Phys.Lett. 85(4), 543 (2004)

    Article  ADS  Google Scholar 

  28. Jelinek L., Marques R.: Artificial magnetism and left-handed media from dielectric rings and rods. J. Phys. Condens. Matter. 22(2), 025902 (2010)

    Article  ADS  Google Scholar 

  29. Kamotski V., Matthies M., Smyshlyaev V.: Exponential homogenization of linear second order elliptic PDEs with periodic coefficients. SIAM J. Math. Anal. 38(5), 1565–1587 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kohn R., Shipman S.: Magnetism and homogenization of micro-resonators. SIAM Multiscale Model. Simul. 7(1), 62–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lepetit T., Akmansoy E.: Magnetism in high-contrast dielectric photonic crystals. Microw. Opt. Technol. Lett. 50(4), 909–911 (2008)

    Article  Google Scholar 

  32. McPhedran R.C., Milton G.W.: Bounds and exact theories for transport properties of inhomogeneous media. Physics A 26, 207–220 (1981)

    Google Scholar 

  33. Milton G.W.: Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors. New J. Phys. 12(3), 033035 (2010)

    Article  ADS  MATH  Google Scholar 

  34. Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge, 2002

  35. O’Brien S., Pendry J.B.: Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter. 14, 4035–4044 (2002)

    Article  ADS  Google Scholar 

  36. PendryJ. , Holden A., Robbins D., Stewart W.: Magnetisim from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  ADS  Google Scholar 

  37. Pendry J., Holden A., Robbins D., Stewart W.: Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter. 10, 4785–4809 (1998)

    Article  ADS  Google Scholar 

  38. Peng L., Ran L., Chen H., Zhang H., Kong L.A., Grzegorczyk T.M.: Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys. Rev. Lett. 98, 157403 (2007)

    Article  ADS  Google Scholar 

  39. Shvets, G., Urzhumov, Y.: Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances. Phys. Rev. Lett. 93(24), 243902-1-4 (2004)

    Google Scholar 

  40. Shipman, S.: Power series for waves in micro-resonator arrays. Proceedings of the 13th International Conference on Mathematical Methods in Electrodynamic Theory, MMET 10, Kyiv, Ukraine, September 6–8, IEEE, 2010

  41. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968)

    Google Scholar 

  42. Vynck K., Felbacq D., Centeno E., Cabuz A.I., Cassagne D., Guizal B.: All-dielectric rod-type metamaterials at optical frequencies. Phys. Rev. Lett. 102, 133901 (2009)

    Article  ADS  Google Scholar 

  43. Service, R.F.: Next Wave of metamaterials hopes to fuel the revolution. Science 327(5962), 138–139 (2010)

    Google Scholar 

  44. Shalaev V.: Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007)

    Article  ADS  Google Scholar 

  45. Shalaev V.M., Cai W., Chettiar U.K., Yuan H.K., Sarychev A.K., Drachev V.P., Kildishev A.V.: Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005)

    Article  ADS  Google Scholar 

  46. Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18) 4184–4187 (2000)

    Google Scholar 

  47. Wheeler M.S., Aitchison J.S., Mojahedi M.: Coated non-magnetic spheres with a negative index of refraction at infrared frequencies. Phys. Rev. B 73, 045105 (2006)

    Article  ADS  Google Scholar 

  48. Yannopapas, V.: Negative refractive index in the near-UV from Au-coated CuCl nanoparticle superlattices. Phys. Stat. Sol. (RRL) 1(5), 208–210 (2007)

    Google Scholar 

  49. Yannopapas V.: Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Appl. Phys. A 87(2), 259–264 (2007)

    Article  ADS  Google Scholar 

  50. Zhang, F., Potet, S., Carbonell, J., Lheurette, E., Vanbesien, O., Zhao, X., Lippens, D.: Negative-zero-positive refractive index in a prism-like omega-type metamaterial. IEEE Trans. Microw. Theory Tech. 56, 2566 (2008)

    Google Scholar 

  51. Zhang S., Fan W., Minhas B.K., Frauenglass A., Malloy K.J., Brueck S.R.J.: Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett. 94, 037402 (2005)

    Article  ADS  Google Scholar 

  52. Zhikov, V.V.: Gaps in the spectrum of some elliptic operators in divergent form with periodic coefficients. Algebra i Analiz 16, 34–58 (2004) [English translation St. Petersburg Math. J. 16(5), 773–790 (2005)]

  53. Zhou X., Zhao X.P.: Resonant condition of unitary dendritic structure with overlapping negative permittivity and permeability. Appl. Phys. Lett. 91, 181908 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lipton.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Lipton, R. Resonance and Double Negative Behavior in Metamaterials. Arch Rational Mech Anal 209, 835–868 (2013). https://doi.org/10.1007/s00205-013-0634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0634-8

Keywords

Navigation