Skip to main content

Advertisement

Log in

Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this work, we introduce a new method to prove the existence and uniqueness of a variational solution to the stochastic nonlinear diffusion equation \({{\rm d}X(t) = {\rm div} \left[\frac{\nabla X(t)}{|\nabla X(t)|}\right]{\rm d}t + X(t){\rm d}W(t) {\rm in} (0, \infty) \times \mathcal{O},}\) where \({\mathcal{O}}\) is a bounded and open domain in \({\mathbb{R}^N, N \geqq 1}\) and W(t) is a Wiener process of the form \({W(t) = \sum^{\infty}_{k = 1}\mu_{k}e_{k}\beta_{k}(t), e_{k} \in C^{2}(\overline{\mathcal{O}}) \cap H^{1}_{0}(\mathcal{O}),}\) and \({\beta_{k}, k \in \mathbb{N}}\) are independent Brownian motions. This is a stochastic diffusion equation with a highly singular diffusivity term. One main result established here is that for all initial conditions in \({L^2(\mathcal{O})}\), it is well posed in a class of continuous solutions to the corresponding stochastic variational inequality. Thus, one obtains a stochastic version of the (minimal) total variation flow. The new approach developed here also allows us to prove the finite time extinction of solutions in dimensions \({1\leqq N \leqq3}\), which is another main result of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, Oxford Universityt Press, New York, 2000

  2. Andreu F., Caselles V., Dí az J., Mazón J.: Some qualitative properties for the total variation flow. J. Funct. Anal. 188, 516–547 (2002)

    MATH  Google Scholar 

  3. Andreu-Vaillo, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics 223, Birkhäuser, Basel, 2004

  4. Attouch, H., Buttazzo, G., Gerard, M.: Variational Analysis in Sobolev Spaces and BV Spaces; Applications to PDES and Optimization. SIAM Series on Optimization, Philadelphia, 2006

  5. Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, New York, 2010

  6. Barbu T., Barbu V., Biga V., Coca D.: A PDE variational approach to image denoising and restoration.. Nonlinear Analysis Real World Applications 10, 1351–1361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barbu V., Da Prato G., Röckner M.: Existence and uniqueness of nonnegative solutions to the stochastic porous media equation. Indiana Univ. Math. J. 57, 187–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barbu, V., Da Prato, G., Röckner M.: Stochastic nonlinear diffusion equations with singular diffusivity. SIAM J. Math. Anal. 41, 3, 1106–1120 (2009)

    Google Scholar 

  9. Barbu V., Da Prato G., Röckner M.: Stochastic porous media equations and self-organized criticality. Comm. Math. Phys. 285, 901–923 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Barbu V., Da Prato G., Röckner M.: Finite time extinction of solutions to fast diffusion equation driven by linear multiplicative noise. J. Math. Anal. Appl. 389, 147–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barbu, V., Da Prato, G., Röckner M.: Addendum to “Stochastic nonlinear diffusion equations with singular diffusivity. CRC 701-Preprint 2011, Universität Bielefeld

  12. Barbu V., Röckner M.: On a random scaled porous media equation. J. Differ. Equ. 251, 2494–2514 (2011)

    Article  MATH  Google Scholar 

  13. Barbu V., Röckner M.: Stochastic porous media equations and self-organized criticality: convergence to the critical state in all dimensions. Commun. Math. Phys. 311, 539–555 (2012)

    Article  ADS  MATH  Google Scholar 

  14. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin, 2010

  15. Brezis, H.: Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, 1973

  16. Brezis, H.: Personal communication and detailed paper in preparation.

  17. Brezis H., Stampacchia G.: Sur la régularité de la solution d’inéquations elliptiques.. Bulletin de la SMF 96, 153–180 (1968)

    MathSciNet  MATH  Google Scholar 

  18. Chamballe A., Lions P.L.: Image recovery via total variation minimization. Numer. Math. 76, 17–31 (1997)

    Google Scholar 

  19. Chan, T., Esedogly, S., Park, F., Yip, A.: Total variation image restoration. Overview and recent developments. In Handbook of Mathematical Models in Computer Vision, Springer, New York, 2006

  20. Ciotir I., Tolle J.T.: Convergence of invariant measures for singular stochastic diffusion equations. Stoch. Process. Appl. 122, 1998–2017 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992

  22. Gess, B., Tölle, J.M.: Multivalued singular stochastic evolution inclusion. http://arxiv.org/ads/112.5672

  23. Giga Y., Kobayashi R.: On constrained equations with singular diffusivity. Methods Appl. Anal. 10(2), 253–278 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Giga M.H., Giga Y.: Generalized motion by non local curvature in the plane. Arch. Rat. Mech. Anal. 159, 295–333 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Giga Y., Kohn R.V.: Scale invariant extinction time estimates for some singular diffusion equations. Discret. Contin. Dynam. Syst. Ser. A , 30, 509–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kobayashi R., Giga Y.: Equations with singular diffusivity. J. Stat. Phys. 95, 1187–1220 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. Curr. Probl. Math. 14 (Russian), Acad. Nauk SSSR, 71–147 (1979)

  28. Krylov, N.V.: Itô’s formula for the L p -norm of a stochastic \({W^1_p}\) -valued process. Probab. Theory Relat. Fields 147, 583–605 (2010)

    Google Scholar 

  29. Pardoux, E.: Equations aux dérivées partielles stochastiques non linéaires monotones, étude de solutions fortes de type Itô. Thèse Université Paris Sud, Orsay, 1975

  30. Prevot, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Math., 1905, Berlin, 2007

  31. Rudin L.I., Osher S., Fatemi E.: Nonlinear total variational based noise removal algorithms.. Physica D 60, 259–268 (1992)

    Article  ADS  MATH  Google Scholar 

  32. Taira, K.: Analytic Semigroups and Semilinear Initial Boundary Value Problems, Cambridge University Press, Cambridge, 1995

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Barbu.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbu, V., Röckner, M. Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise. Arch Rational Mech Anal 209, 797–834 (2013). https://doi.org/10.1007/s00205-013-0632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0632-x

Keywords

Navigation