Skip to main content
Log in

Asymptotics of the Solutions of the Stochastic Lattice Wave Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the long time limit for the solutions of a discrete wave equation with weak stochastic forcing. The multiplicative noise conserves energy, and in the unpinned case also conserves momentum. We obtain a time-inhomogeneous Ornstein-Uhlenbeck equation for the limit wave function that holds for both square integrable and statistically homogeneous initial data. The limit is understood in the point-wise sense in the former case, and in the weak sense in the latter. On the other hand, the weak limit for square integrable initial data is deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bal G., Komorowski T., Ryzhik L.: Asymptotics of the solutions of the random Schrödinger equation. Arch. Ration. Mech. Anal. 200, 613–664 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basile G., Bernardin C., Olla S.: A momentum conserving model with anomalous thermal conductivity in low dimension. Phys. Rev. Lett. 96, 204303 (2006)

    Article  ADS  Google Scholar 

  3. Basile G., Bernardin C., Olla S.: Thermal conductivity for a momentum conserving model. Comm. Math. Phys. 287, 67–98 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Basile G., Olla S., Spohn H.: Energy transport in stochastically perturbed lattice dynamics. Arch. Rat. Mech. 195, 171–203 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bernardin C., Olla S.: Fourier’s law for a microscopic model of heat conduction. J. Stat. Phys 118, 271–289 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  6. Billingsley, P.: Convergence of Probability Measures. Wiley, New York 1968

  7. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge 1992

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer Verlag, Berlin 1998

  9. Helland I.S.: Central limit theorems for martingales with discrete, or continuous time. Scan. J. Stat. 9, 79–94 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Jakubowski A.: On the Skorokhod topology. Annales de l’I.H.P., Section B 22, 263–285 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Kesten H., Papanicolaou G.C.: A limit theorem for turbulent diffusion. Commun. Math. Phys. 65, 97–128 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Komorowski T., Jara M., Olla S.: Limit theorems for a additive functionals of a Markov chain. Anna. Appl. Prob. 19, 2270–2300 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Komorowski, T., Stȩpień, Ł.: Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension. J. Stat. Phys., 148, 1–37 (2012)

    Google Scholar 

  14. Lepri S., Livi R., Politi A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  15. Lukkarinen J., Spohn H.: Kinetic limit for wave propagation in a random medium. Arch. Rat. Mech. Anal. 183, 93–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mielke A.: Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner-Husimi transforms. Arch. Rat. Mech. Anal. 181, 401–448 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mitoma, I.: On the sample continuity of \({\mathcal{S}'}\) processes. J. Math. Soc. Japan, 35, 629–636 (1983)

    Google Scholar 

  18. Spohn H.: The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124, 1041–1104 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Stroock, D.W., Varadhan, S.R. Srinivasa: Multidimensional diffusion processes. Reprint of the 1997 edition. Classics in Mathematics. Springer-Verlag, Berlin 2006

  20. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov spectral of turbulence I. Wave turbulence. Springer, Berlin 1992

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenya Ryzhik.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komorowski, T., Olla, S. & Ryzhik, L. Asymptotics of the Solutions of the Stochastic Lattice Wave Equation. Arch Rational Mech Anal 209, 455–494 (2013). https://doi.org/10.1007/s00205-013-0626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0626-8

Keywords

Navigation