Abstract
In this work we provide an Aleksandrov–Bakelman–Pucci type estimate for a certain class of fully nonlinear elliptic integro-differential equations, the proof of which relies on an appropriate generalization of the convex envelope to a nonlocal, fractional-order setting and on the use of Riesz potentials to interpret second derivatives as fractional order operators. This result applies to a family of equations involving some nondegenerate kernels and, as a consequence, provides some new regularity results for previously untreated equations. Furthermore, this result also gives a new comparison theorem for viscosity solutions of such equations which depends only on the L ∞ and L n norms of the right-hand side, in contrast to previous comparison results which utilize the continuity of the right-hand side for their conclusions. These results appear to be new, even for the linear case of the relevant equations.
Similar content being viewed by others
References
Abels H., Kassmann M.: The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels. Osaka J. Math. 46(3), 661–683 (2009)
Awatif S.: Équations d’Hamilton–Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité. Commum. Partial Differ. Equ. 16(6–7), 1057–1074 (1991)
Barles G., Chasseigne E., Imbert C.: On the dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57(1), 213–246 (2008)
Barles G., Chasseigne E., Imbert C.: Hölder continuity of solutions of second-order elliptic integro-differential equations. J. Eur. Math. Soc. 13(1), 1–26 (2011)
Barles G., Imbert C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567–585 (2008)
Barlow M.T., Bass R.F., Chen Z.-Q., Kassmann M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963–1999 (2009)
Bass, R.F., Kassmann, M.: Harnack inequalities for non-local operators of variable order. Trans. Am. Math. Soc. 357(2), 837–850 (electronic) (2005)
Bass R.F., Kassmann M.: Hölder continuity of harmonic functions with respect to operators of variable order. Commun. Partial Differ. Equ. 30(7–9), 1249–1259 (2005)
Bass R.F., Levin D.A.: Harnack inequalities for jump processes. Potential Anal. 17(4), 375–388 (2002)
Bass, R.F., Levin, D.A.: Transition probabilities for symmetric jump processes. Trans. Am. Math. Soc. 354(7), 2933–2953 (electronic) (2002)
Bjorland, C., Caffarelli, L., Figalli, A.: Non-local tug-of-war and the infinity fractional laplacian. Comm. Pure Appl. Math. (2012) (to appear)
Brézis H., Kinderlehrer D.: The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23, 831–844 (1973/1974)
Caffarelli L., Crandall M.G., Kocan M., Swįch A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Commun. Pure Appl. Math. 49(4), 365–397 (1996)
Caffarelli L., Nirenberg L., Spruck J.: The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian. Acta Math. 155(3–4), 261–301 (1985)
Caffarelli, L.A., Chan, C.H., Vasseur, A.: Regularity Theory for Nonlinear Integral operators. arXiv:1003.1699v1 [math.AP] (2010)
Caffarelli, L.A., Silvestre, L.: The Evans–Krylov theorem for non local fully non linear equations. Ann. Math. (2) (2012) (to appear)
Caffarelli, L.A., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Rational. Mech. Anal. (2012) (to appear)
Caffarelli L., Silvestre L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)
Caffarelli, L., Vazquez, J.L.: Nonlinear Porous Medium Flow with Fractional Potential pressure. http://arxiv.org/abs/1001.0410
Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. (2) 130(1), 189–213 (1989)
Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations Vol. 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, 1995
Caffarelli L.A., Souganidis P.E., Wang L.: Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Commun. Pure Appl. Math. 58(3), 319–361 (2005)
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, 2004
Cont R., Voltchkova E.: Integro-differential equations for option prices in exponential Lévy models. Finance Stoch. 9(3), 299–325 (2005)
Crandall M.G., Ishii H., Lions P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)
Garding L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)
Giacomin G., Lebowitz J.L.: Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87(1–2), 37–61 (1997)
Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin, 2001 (Reprint of the 1998 edition)
Gilboa G., Osher S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)
Jensen R., Lions P.-L., Souganidis P.E.: A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations. Proc. Am. Math. Soc. 102(4), 975–978 (1988)
Kassmann, M.: personal communication (2010)
Kassmann, M., Mimica, A.: Analysis of jump processes with nondegenerate jumping kernels. arxiv.org, arXiv:1109.3678v2 [math.PR] (2011)
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities And their Applications Vol. 88 Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980
Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York, 1972 (Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180)
Lasry J.-M., Lions P.-L.: A remark on regularization in Hilbert spaces. Israel J. Math. 55(3), 257–266 (1986)
Lewy H., Stampacchia G.: On existence and smoothness of solutions of some non-coercive variational inequalities. Arch. Rational Mech. Anal. 41, 241–253 (1971)
Lin F.-H.: Second derivative L p-estimates for elliptic equations of nondivergent type. Proc. Am. Math. Soc. 96(3), 447–451 (1986)
Oberman A.M.: The convex envelope is the solution of a nonlinear obstacle problem. Proc. Am. Math. Soc. 135(6), 1689–1694 (electronic)(2007)
Pham H.: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Syst. Estim. Control 8(1), 27 (electronic) (1998)
Schwab R.W.: Periodic homogenization for nonlinear integro-differential equations. SIAM J. Math. Anal. 42(6), 2652–2680 (2010)
Schwab, R.W.: Stochastic homogenization for some nonlinear integro-differential equations. arxiv.org, arXiv:1101.6052v1 [math.AP] (2011)
Silvestre L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)
Silvestre L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)
Soner H.M.: Optimal control with state-space constraint. II. SIAM J. Control Optim. 24(6), 1110–1122 (1986)
Soner, H.M.: Optimal control of jump-Markov processes and viscosity solutions. In: Stochastic differential systems, stochastic control theory and applications (Minneapolis, MN, 1986), Vol. 10 IMA Vol. Math. Appl., pp. 501–511. Springer, New York, 1988
Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1971)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P.-L. Lions
Nestor Guillen was partially supported by NSF grant DMS-0654267 and Russell Schwab was supported by an NSF Postdoctoral Research Fellowship, grant DMS-0903064. This work was carried out during multiple visits of Nestor Guillen to The Center for Nonlinear Analysis at Carnegie Mellon University, for whose support the authors are also grateful. The authors would like to thank Takis Souganidis and Luis Silvestre for comments on the preliminary version of this manuscript, and the authors would like to extend a special thanks to the anonymous referee for helpful observations which led to some significant improvements in this work.
Rights and permissions
About this article
Cite this article
Guillen, N., Schwab, R.W. Aleksandrov–Bakelman–Pucci Type Estimates for Integro-Differential Equations. Arch Rational Mech Anal 206, 111–157 (2012). https://doi.org/10.1007/s00205-012-0529-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-012-0529-0