Skip to main content

Advertisement

Log in

On the Energy Distribution in Fermi–Pasta–Ulam Lattices

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper presents a rigorous study, for Fermi–Pasta–Ulam (FPU) chains with large particle numbers, of the formation of a packet of modes with geometrically decaying harmonic energies from an initially excited single low-frequency mode and the metastability of this packet over longer time scales. The analysis uses modulated Fourier expansions in time of solutions to the FPU system, and exploits the existence of almost-invariant energies in the modulation system. The results and techniques apply to the FPU α- and β-models as well as to higher-order nonlinearities. They are valid in the regime of scaling between particle number and total energy in which the FPU system can be viewed as a perturbation to a linear system, considered over time scales that go far beyond standard perturbation theory. Weak non-resonance estimates for the almost-resonant frequencies determine the time scales that can be covered by this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi D., Ponno A.: On metastability in FPU. Commun. Math. Phys. 264, 539–561 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bambusi D., Ponno A.: Resonance, metastability and blow up in FPU. Lect. Notes Phys. 728, 191 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  3. Benettin, G., Carati, A., Galgani, L., Giorgilli, A.: The Fermi-Pasta-Ulam Problem and the Metastability Perspective. The Fermi-Pasta-Ulam Problem, Lecture Notes in Physics, vol. 728, pp. 152–189. Springer, Berlin, 2008

  4. Benettin G., Gradenigo G.: A study of the Fermi–Pasta–Ulam problem in dimension two. Chaos Interdiscip. J. Nonlinear Sci. 18, 013112 (2008)

    Article  MathSciNet  Google Scholar 

  5. Benettin G., Livi R., Ponno A.: The Fermi–Pasta–Ulam problem: scaling laws vs. initial conditions. J. Stat. Phys. 135(5), 873–893 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Berchialla L., Galgani L., Giorgilli A.: Localization of energy in FPU chains. Discrete Contin. Dyn. Syst. (DCDS-A) 11(4), 855–866 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman G.P., Izrailev F.M.: The Fermi–Pasta–Ulam problem: fifty years of progress. Chaos Interdiscip. J. Nonlinear Sci. 15, 015104 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cohen D., Hairer E., Lubich C.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT 45, 287–305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen D., Hairer E., Lubich C.: Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions. Arch. Ration. Mech. Anal. 187, 341–368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. DeLuca J., Lichtenberg A.J., Ruffo S.: Energy transitions and time scales to equipartition in the Fermi–Pasta–Ulam oscillator chain. Phys. Rev. E 51, 2877–2885 (1995)

    Article  ADS  Google Scholar 

  11. Fermi, E., Pasta, J., Ulam, S.: Studies of Non Linear Problems. Tech. Report LA-1940, Los Alamos, 1955, Later published in E. Fermi: Collected Papers Chicago 1965 and reprinted in [14]

  12. Flach S., Ivanchenko M.V., Kanakov O.I.: q-Breathers in Fermi–Pasta–Ulam chains: existence, localization, and stability. Phys. Rev. E 73, 036618 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  13. Ford J.: The Fermi–Pasta–Ulam problem: paradox turns discovery. Phys. Rep. 213, 271–310 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  14. Gallavotti, G. (ed.): The Fermi–Pasta–Ulam Problem. A Status Report, Lecture Notes in Physics, vol. 728. Springer, Berlin, 2008

  15. Gauckler, L.: Long-Time Analysis of Hamiltonian Partial Differential Equations and Their Discretizations. Ph.D. thesis, Univ. Tübingen, 2010

  16. Gauckler L., Lubich C.: Nonlinear Schrödinger equations and their spectral semi-discretizations over long times. Found. Comput. Math. 10, 141–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer E., Lubich C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2001)

    Article  MathSciNet  Google Scholar 

  18. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin, 2006

  19. Paleari, S., Penati, T.: Numerical Methods and Results in the FPU Problem. The Fermi–Pasta–Ulam Problem, Lecture Notes in Physics, vol. 728, pp. 239–282. Springer, Berlin, 2008

  20. Weissert T.P.: The Genesis of Simulation in Dynamics: Pursuing the Fermi–Pasta–Ulam Problem. Springer, New York (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Hairer.

Additional information

Communicated by A. Mielke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hairer, E., Lubich, C. On the Energy Distribution in Fermi–Pasta–Ulam Lattices. Arch Rational Mech Anal 205, 993–1029 (2012). https://doi.org/10.1007/s00205-012-0526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0526-3

Keywords

Navigation