Skip to main content
Log in

Gauge Transformations, Twisted Poisson Brackets and Hamiltonization of Nonholonomic Systems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the problem of Hamiltonization of nonholonomic systems from a geometric point of view. We use gauge transformations by 2-forms (in the sense of Ševera and Weinstein in Progr Theoret Phys Suppl 144:145 154 2001) to construct different almost Poisson structures describing the same nonholonomic system. In the presence of symmetries, we observe that these almost Poisson structures, although gauge related, may have fundamentally different properties after reduction, and that brackets that Hamiltonize the problem may be found within this family. We illustrate this framework with the example of rigid bodies with generalized rolling constraints, including the Chaplygin sphere rolling problem. We also see through these examples how twisted Poisson brackets appear naturally in nonholonomic mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical methods of classical mechanics (Translated from the Russian by K. Vogtmann and A. Weinstein). In: Graduate Texts in Mathematics, Vol. 60. Springer-Verlag, New York-Heidelberg, 1978

  2. Bates L., Sniatycki J.: Nonholonomic reduction. Rep. Math. Phys. 32, 99–115 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bloch A.M., Krishnapasad P.S., Marsden J.E., Murray R.M.: Nonholonomic mechanical systems with symmetry. Arch. Rat. Mech. Anal. 136, 21–99 (1996)

    Article  MATH  Google Scholar 

  4. Bloch A.M.: Nonholonomic Mechanics and Control. Springer Verlag, New York (2003)

    Book  MATH  Google Scholar 

  5. Bloch A., Fernandez O., Mestdag T.: Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations. Rep. Math. Phys. 63, 225–249 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Borisov A.V., Mamaev I.S.: Chaplygin’s ball rolling problem is Hamiltonian. Math. Notes 70, 793–795 (2001)

    MathSciNet  Google Scholar 

  7. Borisov A.V., Mamaev I.S.: Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems. Regul. Chaotic Dyn. 13, 443–490 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bursztyn H., Crainic M. : Dirac structures, momentum maps, and quasi-Poisson manifolds. In: The Breath of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser Boston, Boston MA, 1–40, 2005

  9. Bursztyn H., Weinstein A.: Poisson geometry and Morita equivalence. In: Poisson Geometry, Deformation Quantisation and Group Representations, London Math. Soc. Lecture Note Ser., Vol. 323. Cambridge University Press, Cambridge, 1–78, 2005

  10. Cantrijn F., de León M., Martínde Diego D.: On almost-Poisson structures in nonholonomic mechanics. Nonlinearity 12, 721–737 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Chaplygin, S.A.: On a ball’s rolling on a horizontal plane. Regul. Chaotic Dyn. 7, 131–148 (2002) [original paper in Mathematical Collection of the Moscow Mathematical Society , 24, 139–168 (1903)]

  12. Chaplygin, S.A.: On the theory of the motion of nonholonomic systems. The reducing-multiplier Theorem. Regul. Chaotic Dyn. 13, 369–376 (2008) [Translated from Matematicheskiĭ sbornik (Russian) 28 (1911), by A. V. Getling]

  13. Courant T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dirac, P.A.M.: Lectures on quantum mechanics. Second printing of the 1964 original. In: Belfer Graduate School of Science Monographs Series, Vol. 2. Belfer Graduate School of Science, New York, 1967 (produced and distributed by Academic Press, Inc., New York)

  15. Duistermaat, J.J.: Chapiygin’s sphere. arXiv:math/0409019v1 (2004)

  16. Ehlers, K., Koiller, J., Montgomery, R., Rios, P.M.: Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization. In: The Breath of Symplectic and Poisson Geometry, Progr. Math., Vol. 232. Birkhäuser Boston, Boston MA, 75–120, 2005

  17. Fedorov Yu.N., Jovanović B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces. J. Nonlinear Sci. 14, 341–381 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Fedorov, Yu.N., Kozlov, V.V.: Various aspects of n-dimensional rigid body dynamics. In: Dynamical Systems in Classical Mechanics, Amer. Math. Soc. Transl. Series 2, Vol. 168. Amer. Math. Soc. Providence, RI, 141–171, 1995

  19. Fernandez O., Mestdag T., Bloch A.M.: A generalization of Chaplygin’s reducibility Theorem. Regul. Chaotic Dyn. 14, 635–655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. García-Naranjo L.C.: Reduction of almost Poisson brackets for nonholonomic systems on Lie groups. Regul. Chaotic Dyn. 12, 365–388 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. García-Naranjo L.C.: Reduction of almost Poisson brackets and Hamiltonization of the Chaplygin sphere. Disc. Cont. Dyn. Syst. Series S 3, 37–60 (2010)

    Article  MATH  Google Scholar 

  22. Hochgerner S., García-Naranjo L.C.: G-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin’s ball. J. Geom. Mech. 1, 35–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ibort A., de León M., Marrero J.C., Martínde Diego D.: Dirac brackets in constrained dynamics. Fortschr. Phys. 47, 459–492 (1999)

    MATH  Google Scholar 

  24. Jovanović B.: Hamiltonization and integrability of the Chaplygin sphere in \({\mathbb{R}^n}\) . J. Nonlinear Sci. 20, 569–593 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Jotz, M., Ratiu, T.S.: Dirac structures, nonholonomic systems and reduction. arXiv:0806.1261 (to appear in Rep. Math. Phys.)

  26. Klimčík C., Ströbl T.: WZW-Poisson manifolds. J. Geom. Phys. 43, 341–344 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Koiller J.: Reduction of some classical nonholonomic systems with symmetry. Arch. Rat. Mech. Anal. 118, 113–148 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koon W.S., Marsden J.E.: The Poisson reduction of nonholonomic mechanical systems. Rep. Math. Phys. 42, 101–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marle Ch.M.: Various approaches to conservative and nonconservative nonholonomic systems. Rep. Math. Phys. 42, 211–229 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. In: A Basic Exposition of Classical Mechanical Systems, 2nd edn. Texts in Applied Mathematics, Vol. 17. Springer-Verlag, New York, 1999

  31. Montgomery, R.: A tour of sub-Riemannian geometries, their geodesics and applications. In: Mathematical Surveys and Monographs, Vol. 91. American Mathematical Society, Providence, RI, 2002

  32. Ohsawa T., Fernandez O., Bloch A.M., Zenkov D.: Nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization. J. Geom. Phys. 61, 1263–1291 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  33. Ševera P., Weinstein A.: Poisson geometry with a 3-form background. Noncommutative geometry and string theory (Yokohama, 2001(. Progr. Theoret. Phys. Suppl. 144), 145–154 (2001)

    Google Scholar 

  34. van der Schaft A.J., Maschke B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys. 34, 225–233 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Veselov, A.P., Veselova, L.E.: Integrable nonholonomic systems on Lie groups. (Russian) Mat. Zametki 44, 604–619, 701 (1988) [translation in Math. Notes44, 810–819 (1989)]

  36. Yoshimura H., Marsden J.E.: Dirac structures in Lagrangian mechanics. Part I: Implicit Lagrangian systems. J. Geom. Phys. 57, 133–156 (2006)

    MathSciNet  ADS  MATH  Google Scholar 

  37. Yoshimura H., Marsden J.E.: Dirac Structures in Lagrangian mechanics. Part II: Variational structures. J. Geom. Phys. 57, 209–250 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Weber R.W.: Hamiltonian systems with constraints and their meaning in mechanics. Arch. Ration. Mech. Anal. 91, 309–335 (1986)

    Article  Google Scholar 

  39. Weinstein A.: The modular automorphism group of a Poisson manifold. J. Geom. Phys. 23, 379–394 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Balseiro.

Additional information

Communicated by M. Ortiz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balseiro, P., García-Naranjo, L.C. Gauge Transformations, Twisted Poisson Brackets and Hamiltonization of Nonholonomic Systems. Arch Rational Mech Anal 205, 267–310 (2012). https://doi.org/10.1007/s00205-012-0512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0512-9

Keywords

Navigation