Abstract
We consider stochastic three-dimensional rotating Navier–Stokes equations and prove averaging theorems for stochastic problems in the case of strong rotation. Regularity results are established by bootstrapping from global regularity of the limit stochastic equations and convergence theorems.
This is a preview of subscription content, access via your institution.
References
Arendt W., Batty C.J.K., Hieber M., Neubrander F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Boston (2001)
Arnold V.I., Khesin B.A.: Topological methods in hydrodynamics. Applied Mathematical Sciences, vol. 125. Springer, Berlin (1997)
Babin A., Mahalov A., Nicolaenko B.: 3D Navier–Stokes and Euler Equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J 50, 1–35 (2001)
Babin A., Mahalov A., Nicolaenko B.: Global regularity of the 3D Rotating Navier–Stokes Equations for resonant domains. Indiana Univ. Math. J 48(3), 1133–1176 (1999)
Babin A., Mahalov A., Nicolaenko B.: Global regularity and integrability of the 3D Euler and Navier–Stokes equations for uniformly rotating fluids. Asymptot. Anal. 15, 103–150 (1997)
Babin A., Mahalov A., Nicolaenko B.: Long-time averaged Euler and Navier–Stokes equations for rotating fluids. In: Kirchgässner, K., Mielke, A. (eds.) Structure and Dynamics of Nonlinear Waves in Fluids. World Scientific, Singapore, 145–157, 1995
Busnello B., Flandoli F., Romito M.: A probabilistic representation for the vorticity of a three-dimensional viscous fluid and for general systems of parabolic equations. Proc. Edinburgh Math. Soc. 48, 295–336 (2005)
Capinski M., Gatarek D.: Stochastic equations in Hilbert space with application to Navier–Stokes Equations in any dimension. J. Funct. Anal. 126, 26–35 (1994)
Cerrai S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab. 19(3), 899–948 (2009)
Cerrai S., Friedlin M.: Averaging principle for a class of stochastic reaction-diffusion equations. Probab. Theory Relat. Fields 144, 137–177 (2009)
Chemin J.Y., Desjardins B., Gallagher I., Grenier E.: Mathematical geophysics. An introduction to rotating fluids and the Navier–Stokes equations. Oxford Lecture Series in Mathematics and its Applications, vol. 32. The Clarendon Press, Oxford University Press (2006)
Chueshov I., Kuksin S.B.: On the random kick-forced 3D Navier–Stokes equations in a thin domain. Arch. Rational Mech. Anal. 188, 117–153 (2008)
Constantin P., Foias C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988)
Da Prato G., Debussche A.: Ergodicity of the 3D stochastic Navier–Stokes equations. J. Math. Pures Appl. 82, 877–947 (2003)
Da Prato G., Zabczyk J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1–454, 1992
Da Prato G., Debussche A.: Absolute continuity of the invariant measure for some stochastic PDEs. J. Stat. Phys. 115(112), 451–468 (2004)
Da Prato G., Rockner M.: Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields 124, 261–303 (2002)
Da Prato G., Zabczyk J.: Second order partial differential equations in Hilbert spaces. London Math. Soc. Lect. Notes Ser. 293, 1–379. Cambridge University Press, 2002
Dragicevic O., Petermichl S., Volberg A.: A rotation method which gives linear L p estimates for powers of the Ahlfors-Beurling operator. J. Math. Pures Appl. 9(6), 86, 492–509
Fefferman C.L.: Existence and smoothness of the Navier–Stokes equation. The Millennium Prize Problems. Clay Math. Inst., Cambridge, 57–67, 2006
Flandoli F.: On the method of Da Prato and Debussche for the 3D stochastic Navier–Stokes equations, J. Evol. Equ. 6, 269–286 (2006)
Flandoli F.: Random perturbations of PDEs and fluid dynamic models. Lecture Notes in Math., vol. 2015. Springer, Berlin (2011)
Flandoli F.: An introduction to 3D stochastic fluid dynamics SPDE in Hydrodynamics: Recent Progress and Prospects, 51–150, Lecture Notes in Math., vol 1942. Springer, Berlin (2008)
Flandoli F.: Irreducibility of the 3D stochastic Navier–Stokes equations. J. Funct. Anal. 149, 160–177 (1997)
Flandoli F., Romito M.: Regularity of transition semigroups associated to a 3D stochastic Navier–Stokes equation. Stochastic Differential Equations: Theory and Applications (with M. Romito), 263–280. Interdiscip. Math. Sci., 2. World Scientific, Hackensack, 2007
Flandoli F., Romito M.: Markov selections for the 3D stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 140(3–4), 407–458 (2007)
Flandoli F., Romito M.: Partial regularity for the stochastic Navier–Stokes equations. Trans. Am. Math. Soc. 354(6), 2207–2241 (2002)
Friedlin M.I., Wentzell A.D.: Averaging principle for stochastic perturbations of multifrequency systems. Stoch. Dyn. 3(3), 393–408 (2003)
Giga Y., Inui K., Mahalov A., Matsui S.: Navier–Stokes equations in a rotating frame with initial data nondecreasing at infinity. Hokkaido Math. J. 35(2), 321–364 (2006)
GigaY. , Inui K., Mahalov A., Matsui S., Saal J.: Rotating Navier–Stokes equations in \({R^3_{+}}\) with initial data nondecreasing at infinity: the Ekman boundary layer problem. Arch. Rational Mech. Anal. 186(2), 177–224 (2007)
Giga Y., Mahalov A., Nicolaenko B.: The Cauchy problem for the Navier–Stokes equations with spatially almost periodic initial data. Ann. Math. Stud. 163,213–223. Princeton University Press, 2007
Greenspan H.P.: The Theory of Rotating Fluids. Breukelen Press, Brookline (1990)
Ikeda N., Watanabe S.: Stochastic differential equations and diffusion processes. North-Holland Mathematical Library, vol. 24, 2nd edn. North-Holland, Amsterdam; Kodansha Ltd., Tokyo, 1989
Kato T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}^3}\) . J. Funct. Anal. 9, 296–305 (1972)
Kuksin S., Piatnitski A.L.: Khasminskii—Whitham averaging for randomly perturbed KdV equation. J. Math. Pures Appl. 89(9), 400–428 (2008)
Ladyzhenskaya O.A.: Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969)
Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)
Mahalov A., Nicolaenko B., Bardos C., Golse F.: Non blow-up of the 3D Euler equations for a class of three-dimensional initial data in cylindrical domains. Methods Appl. Anal. 11(4), 605–634 (2004)
Pedlosky J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (1987)
Poincaré H.: Sur la précession des corps déformables. Bull. Astronomique 27, 321–356 (1910)
Sobolev S.L.: Ob odnoi novoi zadache matematicheskoi fiziki. Izvestiia Akademii Nauk SSSR, Ser. Matematicheskaia 18(1), 3–50 (1954)
Yoneda T.: Long-time solvability of the Navier–Stokes equations in a rotating frame with spatially almost periodic large data. Arch. Rational Mech. Anal. doi:10.1007/s00205-010-0360-4 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. Šverák
Rights and permissions
About this article
Cite this article
Flandoli, F., Mahalov, A. Stochastic Three-Dimensional Rotating Navier–Stokes Equations: Averaging, Convergence and Regularity. Arch Rational Mech Anal 205, 195–237 (2012). https://doi.org/10.1007/s00205-012-0507-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-012-0507-6