Skip to main content

Stochastic Three-Dimensional Rotating Navier–Stokes Equations: Averaging, Convergence and Regularity

Abstract

We consider stochastic three-dimensional rotating Navier–Stokes equations and prove averaging theorems for stochastic problems in the case of strong rotation. Regularity results are established by bootstrapping from global regularity of the limit stochastic equations and convergence theorems.

This is a preview of subscription content, access via your institution.

References

  1. Arendt W., Batty C.J.K., Hieber M., Neubrander F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Boston (2001)

    Google Scholar 

  2. Arnold V.I., Khesin B.A.: Topological methods in hydrodynamics. Applied Mathematical Sciences, vol. 125. Springer, Berlin (1997)

    Google Scholar 

  3. Babin A., Mahalov A., Nicolaenko B.: 3D Navier–Stokes and Euler Equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J 50, 1–35 (2001)

    MathSciNet  Google Scholar 

  4. Babin A., Mahalov A., Nicolaenko B.: Global regularity of the 3D Rotating Navier–Stokes Equations for resonant domains. Indiana Univ. Math. J 48(3), 1133–1176 (1999)

    MathSciNet  Google Scholar 

  5. Babin A., Mahalov A., Nicolaenko B.: Global regularity and integrability of the 3D Euler and Navier–Stokes equations for uniformly rotating fluids. Asymptot. Anal. 15, 103–150 (1997)

    MathSciNet  Google Scholar 

  6. Babin A., Mahalov A., Nicolaenko B.: Long-time averaged Euler and Navier–Stokes equations for rotating fluids. In: Kirchgässner, K., Mielke, A. (eds.) Structure and Dynamics of Nonlinear Waves in Fluids. World Scientific, Singapore, 145–157, 1995

  7. Busnello B., Flandoli F., Romito M.: A probabilistic representation for the vorticity of a three-dimensional viscous fluid and for general systems of parabolic equations. Proc. Edinburgh Math. Soc. 48, 295–336 (2005)

    Article  MathSciNet  Google Scholar 

  8. Capinski M., Gatarek D.: Stochastic equations in Hilbert space with application to Navier–Stokes Equations in any dimension. J. Funct. Anal. 126, 26–35 (1994)

    Article  MathSciNet  Google Scholar 

  9. Cerrai S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab. 19(3), 899–948 (2009)

    Article  MathSciNet  Google Scholar 

  10. Cerrai S., Friedlin M.: Averaging principle for a class of stochastic reaction-diffusion equations. Probab. Theory Relat. Fields 144, 137–177 (2009)

    Article  Google Scholar 

  11. Chemin J.Y., Desjardins B., Gallagher I., Grenier E.: Mathematical geophysics. An introduction to rotating fluids and the Navier–Stokes equations. Oxford Lecture Series in Mathematics and its Applications, vol. 32. The Clarendon Press, Oxford University Press (2006)

    Google Scholar 

  12. Chueshov I., Kuksin S.B.: On the random kick-forced 3D Navier–Stokes equations in a thin domain. Arch. Rational Mech. Anal. 188, 117–153 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. Constantin P., Foias C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988)

    Google Scholar 

  14. Da Prato G., Debussche A.: Ergodicity of the 3D stochastic Navier–Stokes equations. J. Math. Pures Appl. 82, 877–947 (2003)

    MathSciNet  Google Scholar 

  15. Da Prato G., Zabczyk J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1–454, 1992

  16. Da Prato G., Debussche A.: Absolute continuity of the invariant measure for some stochastic PDEs. J. Stat. Phys. 115(112), 451–468 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  17. Da Prato G., Rockner M.: Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields 124, 261–303 (2002)

    Article  MathSciNet  Google Scholar 

  18. Da Prato G., Zabczyk J.: Second order partial differential equations in Hilbert spaces. London Math. Soc. Lect. Notes Ser. 293, 1–379. Cambridge University Press, 2002

  19. Dragicevic O., Petermichl S., Volberg A.: A rotation method which gives linear L p estimates for powers of the Ahlfors-Beurling operator. J. Math. Pures Appl. 9(6), 86, 492–509

  20. Fefferman C.L.: Existence and smoothness of the Navier–Stokes equation. The Millennium Prize Problems. Clay Math. Inst., Cambridge, 57–67, 2006

  21. Flandoli F.: On the method of Da Prato and Debussche for the 3D stochastic Navier–Stokes equations, J. Evol. Equ. 6, 269–286 (2006)

    Article  MathSciNet  Google Scholar 

  22. Flandoli F.: Random perturbations of PDEs and fluid dynamic models. Lecture Notes in Math., vol. 2015. Springer, Berlin (2011)

    Book  Google Scholar 

  23. Flandoli F.: An introduction to 3D stochastic fluid dynamics SPDE in Hydrodynamics: Recent Progress and Prospects, 51–150, Lecture Notes in Math., vol 1942. Springer, Berlin (2008)

    Google Scholar 

  24. Flandoli F.: Irreducibility of the 3D stochastic Navier–Stokes equations. J. Funct. Anal. 149, 160–177 (1997)

    Article  MathSciNet  Google Scholar 

  25. Flandoli F., Romito M.: Regularity of transition semigroups associated to a 3D stochastic Navier–Stokes equation. Stochastic Differential Equations: Theory and Applications (with M. Romito), 263–280. Interdiscip. Math. Sci., 2. World Scientific, Hackensack, 2007

  26. Flandoli F., Romito M.: Markov selections for the 3D stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 140(3–4), 407–458 (2007)

    Article  MathSciNet  Google Scholar 

  27. Flandoli F., Romito M.: Partial regularity for the stochastic Navier–Stokes equations. Trans. Am. Math. Soc. 354(6), 2207–2241 (2002)

    Article  MathSciNet  Google Scholar 

  28. Friedlin M.I., Wentzell A.D.: Averaging principle for stochastic perturbations of multifrequency systems. Stoch. Dyn. 3(3), 393–408 (2003)

    MathSciNet  Google Scholar 

  29. Giga Y., Inui K., Mahalov A., Matsui S.: Navier–Stokes equations in a rotating frame with initial data nondecreasing at infinity. Hokkaido Math. J. 35(2), 321–364 (2006)

    MathSciNet  Google Scholar 

  30. GigaY. , Inui K., Mahalov A., Matsui S., Saal J.: Rotating Navier–Stokes equations in \({R^3_{+}}\) with initial data nondecreasing at infinity: the Ekman boundary layer problem. Arch. Rational Mech. Anal. 186(2), 177–224 (2007)

    Article  ADS  Google Scholar 

  31. Giga Y., Mahalov A., Nicolaenko B.: The Cauchy problem for the Navier–Stokes equations with spatially almost periodic initial data. Ann. Math. Stud. 163,213–223. Princeton University Press, 2007

    Google Scholar 

  32. Greenspan H.P.: The Theory of Rotating Fluids. Breukelen Press, Brookline (1990)

    Google Scholar 

  33. Ikeda N., Watanabe S.: Stochastic differential equations and diffusion processes. North-Holland Mathematical Library, vol. 24, 2nd edn. North-Holland, Amsterdam; Kodansha Ltd., Tokyo, 1989

  34. Kato T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}^3}\) . J. Funct. Anal. 9, 296–305 (1972)

    Article  Google Scholar 

  35. Kuksin S., Piatnitski A.L.: Khasminskii—Whitham averaging for randomly perturbed KdV equation. J. Math. Pures Appl. 89(9), 400–428 (2008)

    MathSciNet  Google Scholar 

  36. Ladyzhenskaya O.A.: Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969)

    Google Scholar 

  37. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  38. Mahalov A., Nicolaenko B., Bardos C., Golse F.: Non blow-up of the 3D Euler equations for a class of three-dimensional initial data in cylindrical domains. Methods Appl. Anal. 11(4), 605–634 (2004)

    MathSciNet  Google Scholar 

  39. Pedlosky J.: Geophysical Fluid Dynamics, 2nd edn. Springer, New York (1987)

    Book  Google Scholar 

  40. Poincaré H.: Sur la précession des corps déformables. Bull. Astronomique 27, 321–356 (1910)

    ADS  Google Scholar 

  41. Sobolev S.L.: Ob odnoi novoi zadache matematicheskoi fiziki. Izvestiia Akademii Nauk SSSR, Ser. Matematicheskaia 18(1), 3–50 (1954)

    MathSciNet  Google Scholar 

  42. Yoneda T.: Long-time solvability of the Navier–Stokes equations in a rotating frame with spatially almost periodic large data. Arch. Rational Mech. Anal. doi:10.1007/s00205-010-0360-4 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Mahalov.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flandoli, F., Mahalov, A. Stochastic Three-Dimensional Rotating Navier–Stokes Equations: Averaging, Convergence and Regularity. Arch Rational Mech Anal 205, 195–237 (2012). https://doi.org/10.1007/s00205-012-0507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0507-6

Keywords