Abstract
In the planar three-body problem, we study solutions with zero initial velocity (brake orbits). Following such a solution until the three masses become collinear (syzygy), we obtain a continuous, flow-induced Poincaré map. We study the image of the map in the set of collinear configurations and define a continuous extension to the Lagrange triple collision orbit. In addition, we provide a variational characterization of some of the resulting brake-to-syzygy orbits and find simple examples of periodic brake orbits.
Similar content being viewed by others
References
Albouy A., Chenciner A.: Le probléme des n corps et les distances mutuelles. Inventiones mathematicae 131, 151–184 (1998)
Birkhoff, G.D.: Dynamical Systems, vol. 9. American Mathematical Society Colloquium Publications, 1927
Burrau, C.: Numerische Berechnung eines Spezialfalles des Dreikorperproblems. Astronomische Nachrichten, Band 195. Nr. 4662, 6, pp. 114–118 (1913). http://adsabs.harvard.edu/abs/1913AN....195..113B
Chenciner, A.: Action minimizing solutions of the Newtonian n-body problem: from homology to symmetry. Proceedings of the International Congress of Mathematics, vol. III (Beijing, 2002), 279–294. Higner Ed. Press, 2002
Chenciner A., Llibre J.: A note on the existence of invariant punctured tori in the planar circular restricted three-body problem. Ergodic Theoty Dyn. Syst. 8, 63–72 (1988)
Chenciner A., Montgomery R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. 152(3), 881–901 (2000)
Easton R.: Parabolic orbits for the planar three-body problem. J. Differ. Equ. 52, 116–134 (1984)
Easton R., McGehee R.: Homoclinic phenomena for orbits doubly asymptotic to an invariant three-sphere. Indiana Univ. Math. J. 28, 211–240 (1979)
Ewing G.M.: Calculus of Variations with Applications. Dover, New York (1985)
Lagrange, J-L.: Essai sur le Probléme des Trois Corps. Prix de l’Académie Royale des Sciences de Paris, tome IX. In volume 6 of œuvres (page 292), 1772
Marchal C.: How the minimization of action avoids singularities. Celestial Mech. Dyn. Astron. 83, 325–354 (2002)
Marsden, J.: Lecture on Mechanics. London Mathematical Society Lecture Notes Series, vol. 174. Cambridge University Press, 1992
McGehee R.: Triple collision in the collinear three-body problem. Inv. Math. 27, 191–227 (1974)
McGehee R.: A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Differ. Equ. 14, 70–88 (1973)
Tanikawa, K., Mikkola, S.: A trial symbolic dynamics of the planar three-body. arXiv:0802.2465v1 (2008)
Moeckel R.: Orbits near triple collision in the three-body problem. Indiana Univ. Math J. 32(4), 221–240 (1983)
Montgomery R.: Infinitely many syzygies. Arch. Rational Mech. Anal. 164(4), 311–340 (2002)
Montgomery R.: The zero angular momentum three-body problem: all but one solution has syzygies. Ergodic Theory Dyn. Syst. 27(6), 1933–1946 (2007)
Montgomery R.: The N-body problem, the braid group, and action-minimizing periodic orbits. Nonlinearity 11(2), 363–376 (1998)
Moore C.: Braids in classical gravity. Phys. Rev. Lett. 70, 3675–3679 (1993)
Robinson C.: Homoclinic orbits and oscillation for the planar three-body problem. J. Differ. Equ. 52, 356–377 (1984)
Ruiz, O.R.: Existence of Brake-Orbits in Finsler Mechanical Systems. U.C. Berkeley thesis in Mathematics, 1975
Seifert, H.: Periodische Bewegungen Mechanischer Systeme. Math. Z. 51 (1948). Transl. by W. McCain http://count.ucsc.edu/~rmont/papers/list.html (2006)
Simó, C.: Analysis of triple collision in the isosceles three-body problem. In Classical Mechanics and Dynamical Systems. Marcel Dekker, pp. 203–224, 1981
Simó C., LLibre J.: Charcterization of transversal homothetic solutions in the n-body problem. Arch. Rational Mech. Anal. 77, 189–198 (1981)
Simó C., Martinez R.: Qualitative study of the planar isosceles three-body problem. Cel. Mech. 41(1–4), 179–251 (1988)
Szehebely, V.: Burrau’s problem of three bodies. Proc. Natl. Acad. Sci. 58, 60–65 (1967). http://adsabs.harvard.edu/abs/1967PNAS...58...60S
Szehebely, V., Peters, F.: A new periodic solution to the problem of three bodies. Astron. J. 72(9), 1187–1190 (1967). http://adsabs.harvard.edu/abs/1967AJ.....72.1187S
Tanikawa, K., Mikkola, S.: A trial symbolic dynamics of the planar three-body problem. arXiv:0802.2465
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Rabinowitz
Rights and permissions
About this article
Cite this article
Moeckel, R., Montgomery, R. & Venturelli, A. From Brake to Syzygy. Arch Rational Mech Anal 204, 1009–1060 (2012). https://doi.org/10.1007/s00205-012-0502-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-012-0502-y