Skip to main content
Log in

Abstract

In the planar three-body problem, we study solutions with zero initial velocity (brake orbits). Following such a solution until the three masses become collinear (syzygy), we obtain a continuous, flow-induced Poincaré map. We study the image of the map in the set of collinear configurations and define a continuous extension to the Lagrange triple collision orbit. In addition, we provide a variational characterization of some of the resulting brake-to-syzygy orbits and find simple examples of periodic brake orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albouy A., Chenciner A.: Le probléme des n corps et les distances mutuelles. Inventiones mathematicae 131, 151–184 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Birkhoff, G.D.: Dynamical Systems, vol. 9. American Mathematical Society Colloquium Publications, 1927

  3. Burrau, C.: Numerische Berechnung eines Spezialfalles des Dreikorperproblems. Astronomische Nachrichten, Band 195. Nr. 4662, 6, pp. 114–118 (1913). http://adsabs.harvard.edu/abs/1913AN....195..113B

  4. Chenciner, A.: Action minimizing solutions of the Newtonian n-body problem: from homology to symmetry. Proceedings of the International Congress of Mathematics, vol. III (Beijing, 2002), 279–294. Higner Ed. Press, 2002

  5. Chenciner A., Llibre J.: A note on the existence of invariant punctured tori in the planar circular restricted three-body problem. Ergodic Theoty Dyn. Syst. 8, 63–72 (1988)

    Article  MathSciNet  Google Scholar 

  6. Chenciner A., Montgomery R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. 152(3), 881–901 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Easton R.: Parabolic orbits for the planar three-body problem. J. Differ. Equ. 52, 116–134 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Easton R., McGehee R.: Homoclinic phenomena for orbits doubly asymptotic to an invariant three-sphere. Indiana Univ. Math. J. 28, 211–240 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ewing G.M.: Calculus of Variations with Applications. Dover, New York (1985)

    Google Scholar 

  10. Lagrange, J-L.: Essai sur le Probléme des Trois Corps. Prix de l’Académie Royale des Sciences de Paris, tome IX. In volume 6 of œuvres (page 292), 1772

  11. Marchal C.: How the minimization of action avoids singularities. Celestial Mech. Dyn. Astron. 83, 325–354 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Marsden, J.: Lecture on Mechanics. London Mathematical Society Lecture Notes Series, vol. 174. Cambridge University Press, 1992

  13. McGehee R.: Triple collision in the collinear three-body problem. Inv. Math. 27, 191–227 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. McGehee R.: A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Differ. Equ. 14, 70–88 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Tanikawa, K., Mikkola, S.: A trial symbolic dynamics of the planar three-body. arXiv:0802.2465v1 (2008)

  16. Moeckel R.: Orbits near triple collision in the three-body problem. Indiana Univ. Math J. 32(4), 221–240 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Montgomery R.: Infinitely many syzygies. Arch. Rational Mech. Anal. 164(4), 311–340 (2002)

    Article  ADS  MATH  Google Scholar 

  18. Montgomery R.: The zero angular momentum three-body problem: all but one solution has syzygies. Ergodic Theory Dyn. Syst. 27(6), 1933–1946 (2007)

    Article  MATH  Google Scholar 

  19. Montgomery R.: The N-body problem, the braid group, and action-minimizing periodic orbits. Nonlinearity 11(2), 363–376 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Moore C.: Braids in classical gravity. Phys. Rev. Lett. 70, 3675–3679 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Robinson C.: Homoclinic orbits and oscillation for the planar three-body problem. J. Differ. Equ. 52, 356–377 (1984)

    Article  MATH  Google Scholar 

  22. Ruiz, O.R.: Existence of Brake-Orbits in Finsler Mechanical Systems. U.C. Berkeley thesis in Mathematics, 1975

  23. Seifert, H.: Periodische Bewegungen Mechanischer Systeme. Math. Z. 51 (1948). Transl. by W. McCain http://count.ucsc.edu/~rmont/papers/list.html (2006)

  24. Simó, C.: Analysis of triple collision in the isosceles three-body problem. In Classical Mechanics and Dynamical Systems. Marcel Dekker, pp. 203–224, 1981

  25. Simó C., LLibre J.: Charcterization of transversal homothetic solutions in the n-body problem. Arch. Rational Mech. Anal. 77, 189–198 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Simó C., Martinez R.: Qualitative study of the planar isosceles three-body problem. Cel. Mech. 41(1–4), 179–251 (1988)

    ADS  Google Scholar 

  27. Szehebely, V.: Burrau’s problem of three bodies. Proc. Natl. Acad. Sci. 58, 60–65 (1967). http://adsabs.harvard.edu/abs/1967PNAS...58...60S

    Google Scholar 

  28. Szehebely, V., Peters, F.: A new periodic solution to the problem of three bodies. Astron. J. 72(9), 1187–1190 (1967). http://adsabs.harvard.edu/abs/1967AJ.....72.1187S

  29. Tanikawa, K., Mikkola, S.: A trial symbolic dynamics of the planar three-body problem. arXiv:0802.2465

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Venturelli.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeckel, R., Montgomery, R. & Venturelli, A. From Brake to Syzygy. Arch Rational Mech Anal 204, 1009–1060 (2012). https://doi.org/10.1007/s00205-012-0502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0502-y

Keywords

Navigation