Skip to main content
Log in

Multi-Vortex Solutions to Ginzburg–Landau Equations with External Potential

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the existence of multi-vortex solutions to the Ginzburg–Landau equations with external potential on \({\mathbb{R}^2}\) . These equations model equilibrium states of superconductors and stationary states of the U(1) Higgs model of particle physics. In the former case, the external potential models impurities and defects. We show that if the external potential is small enough and the magnetic vortices are widely spaced, then one can pin one or an arbitrary number of vortices in the vicinity of a critical point of the potential. In addition, one can pin an arbitrary number of vortices near infinity if the potential is radially symmetric and of an algebraic order near infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftalion A., Sandier E., Serfaty S.: Pinning phenomena in Ginzburg-Landau model of superconductivity. J. Math. Pures Appl. 80, 339–372 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140, 285–300 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Andre N., Bauman P., Phillips D.: Vortex pinning with bounded fields for the Ginzburg Landau equation. Ann. Inst. H. Poincaré Anal. Non Linéare 20, 705–729 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Andre N., Shafrir I. Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. I, II. Arch. Rational Mech. Anal. 142(1), 45–73, 75–98 (1998)

    Google Scholar 

  5. Berger M.S., Chen Y.Y.: Symmetric vortices for the nonlinear Ginzburg-Landau equations of superconductivity. J. Funct. Anal. 82, 259–295 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beaulieu A., Hadiji R.: Asymptotic behavior of minimizers of a Ginzburg-Landau equation with weight near their zeroes. Asymptot. Anal. 22(3–4), 303–347 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Bethuel F., Brezis H., Hélein F.: Ginzburg-Landau Vortices. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  8. Blatter G., Feigelman M.V. et al.: Vortices in high temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994)

    Article  ADS  Google Scholar 

  9. Bogomolńyi E.B.: Stability of classical solutions. Yad. Fiz. 24, 861–870 (1976)

    Google Scholar 

  10. Chapman, S.J.: Macroscopic Models of Superconductivity. Proc. NATO ASI. (1999)

  11. Chapman, S.J.: Macroscopic Models of Superconductivity. Proc. 4th ICIAM (1999)

  12. Chapman S.J., Du Q., Gunzburger M.D.: A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions. Eur. J. Appl. Math. 6, 97–114 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chapman S.J., Richardson G.: Vortex pinning by inhomogeneities in type-II superconductors. Physica D 108, 397–407 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Colliander J., Jerrard R.: Vortex dynamics for the Ginzburg-Landau Schrödinger equation. Int. Math. Res. Not. 7, 333–358 (1997)

    Google Scholar 

  15. del Pino M., Felmer P.: Local mountain passes for semilinear elliptic problems on unbounded domains. Calc. Var. PDEs 4, 121–137 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. del Pino M., Felmer P.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 127–149 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Demoulini S., Stuart D.: Gradient flow of the superconducting Ginzburg-Landau functional of the plane. Commun. Anal. Geom. 5, 121–198 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Diudonne J.: Foundations of Modern Analysis. Academic Press, New York (1960)

    Google Scholar 

  19. Du Q., Gunzburger M.D., Peterson J.S.: Computational simulations of type II superconductivity including pinning phenomena. Phys. Rev. B 51, 16194–16203 (1995)

    Article  ADS  Google Scholar 

  20. E W. (1994) Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Physica D 77, 384–404

    Google Scholar 

  21. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gustafson S.: Dynamic stability of magnetic vortices. Nonlinearity 15, 1717–1728 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Gustafson S., Sigal I.M.: Stability of magnetic vortices. Commun. Math. Phys. 212, 257–275 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Gustafson S., Sigal I.M.: Effective dynamics of magnetic vortices. Adv. Math. 199, 448–498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gustafson S., Ting F.S.T.: Dynamic stability and instability of pinned fundamental vortices. J. Nonlinear Sci. 19, 341–374 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Gui C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Commun. PDE 21, 787–820 (1997)

    Article  MathSciNet  Google Scholar 

  27. Jaffe, J., Taubes, C.: Vortices and Monopoles. Bikhäuser, Boston, 1980

  28. Jerrard R., Soner M.: Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142, 99–125 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Kim, S.: PhD thesis, Materials Science & Engineering, Texas A&M (2004)

  30. Kang X., Wei J.: On interacting bumps of semiclassical states of nonlinear Schrödinger equations. Adv. Differ. Equ. 5, 899–928 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Lin F.H., Ni W.M., Wei J.: On the number of interior peak solutions for a singularly perturbed Neumann problem. Commun. Pure Appl. Math. 60(2), 252–281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lin F.H., Xin J.: On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation. Commun. Math. Phys. 200, 249–274 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Oh Y.G.: Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V) a . Commun. Partial Differ. Equ. 13, 1499–1519 (1988)

    Article  MATH  Google Scholar 

  34. Oh Y.G.: Stability of semi-classical bound states of nonlinear Schrödinger equations with potentials. Commun. Math. Phys. 121, 11–33 (1989)

    Article  ADS  MATH  Google Scholar 

  35. Oh Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

    Article  ADS  MATH  Google Scholar 

  36. Peres L., Rubinstein J.: Vortex dynamics in U(1) Ginzburg-Landau models. Physica D 64, 299–309 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Phlor, B.: PhD thesis, Princeton University (1978)

  38. Riviére, T.: Ginzburg-Landau Vortices: The Static Model. Séminaire Bourbaki, 1999/2000 (2002)

  39. Riviére T.: Towards Jaffe and Taubes conjectures in the strongly repulsive limit. Manuscr. Math. 108, 217–273 (2002)

    Article  MATH  Google Scholar 

  40. Rubenstein J.: Six lectures on superconductivity. CRM Proc. Lect. Notes 13, 163–184 (1998)

    Google Scholar 

  41. Sandier E., Serfaty S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57, 1627–1672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sigal I.M., Strauss Y.: Effective dynamics of a magnetic vortex in a local potential. J. Nonlinear Sci. 16, 123–157 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Sigal, I.M., Ting, F.S.T.: Pinning of magnetic vortices by external potential. Algebra i Analyz 1, 239–268 (2004); also reprinted in St. Petersburg Math. J. 16(1), 211–236 (2005)

  44. Spirn D.: Vortex dynamics of the full time-dependent Ginzburg-Landau equations. Commun. Pure Appl. Math. 55, 537–581 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stuart D.: Dynamics of Abelian Higgs vortices in the near Bogomolny regime. Commun. Math. Phys. 159, 51–91 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Ting F.S.T.: Effective dynamics of multi-vortices in an external potential for Ginzburg-Landau gradient flow. Nonlinearity 23, 179 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, New York, 1975

  48. Ting, F., Wei, J.: Finite-energy degree-changing non-radial magnetic vortex solutions to the Ginzburg-Landau equations. (Submitted)

  49. Wei J., Winter M.: Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in \({\mathbb{R}^1}\) . Methods Appl. Anal. 14, 119–163 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Yan S., Wei J.: Infinitely many positive solutions for the nonlinear Schrödinger equations in \({\mathbb{R}^N}\) . Cal. Var. PDE 37, 423–439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ting.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakylak, A., Ting, F. & Wei, J. Multi-Vortex Solutions to Ginzburg–Landau Equations with External Potential. Arch Rational Mech Anal 204, 313–354 (2012). https://doi.org/10.1007/s00205-011-0478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0478-z

Keywords

Navigation