Skip to main content
Log in

Global Dynamics Above the Ground State for the Nonlinear Klein–Gordon Equation Without a Radial Assumption

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We extend our result Nakanishi and Schlag in J. Differ. Equ. 250(5):2299–2333, 2011) to the non-radial case, giving a complete classification of global dynamics of all solutions with energy that is at most slightly above that of the ground state for the nonlinear Klein–Gordon equation with the focusing cubic nonlinearity in three space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Ball, J.: Saddle point analysis for an ordinary differential equation in a Banach space, and an application to dynamic buckling of a beam. Nonlinear Elasticity, (Ed. Dickey R.) Academic Press, New York, 93–160, 1973

  3. Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial differential equations. Dynamics Reported, Vol. 2. Dynam. Report. Ser. Dynam. Systems Appl., 2. Wiley, Chichester, 1–38, 1989

  4. Beceanu, M.: New estimates for a time-dependent Schrödinger equation. Duke Math. J. Preprint, arXiv:0909.4029 (to appear)

  5. Beceanu, M.: A critical centre-stable manifold for the Schroedinger equation in three dimensions. Commun. Pure and Applied Math. Preprint, arXiv:0909.1180 (to appear)

  6. Berestycki H., Cazenave T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293(9), 489–492 (1981)

    MathSciNet  MATH  Google Scholar 

  7. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Bergh J., Löfström J.: Interpolation spaces. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  9. Brenner P.: On space-time means and everywhere defined scattering operators for nonlinear Klein–Gordon equations. Math. Z. 186(3), 383–391 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner P.: On scattering and everywhere defined scattering operators for nonlinear Klein–Gordon equations. J. Differ. Equ. 56(3), 310–344 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coffman C.: Uniqueness of the ground state solution for Δuu + u 3 = 0 and a variational characterization of other solutions. Arch. Ration. Mech. Anal. 46, 81–95 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Costin, O., Huang, M., Schlag, W.: On the spectral properties of L ± in three dimensions. Preprint, arXiv:1107.0323

  13. Demanet L., Schlag W.: Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation. Nonlinearity 19(4), 829–852 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Duyckaerts T., Merle F.: Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787–1840 (2009)

    Article  MathSciNet  Google Scholar 

  15. Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP (2008)

  16. Ginibre J., Velo G.: The global Cauchy problem for the nonlinear Klein–Gordon equation. Math. Z. 189(4), 487–505 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ginibre J., Velo G.: Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43(4), 399–442 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Hirsch M.W., Pugh C.C., Shub M.: Invariant manifolds. Lecture Notes in Mathematics, Vol. 583. Springer, Berlin (1977)

    Google Scholar 

  19. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Scattering threshold for the focusing nonlinear Klein–Gordon equation. Analysis & PDE. Preprint, arXiv:1001.1474 (to appear)

  20. Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966)

    Google Scholar 

  21. Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krieger J., Schlag W.: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Am. Math. Soc. 19(4), 815–920 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levine H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form \({Pu_{tt} = -A u +\mathcal{F}(u)}\) . Trans. Am. Math. Soc. 192, 1–21 (1974)

    ADS  MATH  Google Scholar 

  25. Lions P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part I. Ann. HP 1, 109–145 (1984)

    MATH  Google Scholar 

  26. Lions P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part II. Rev. Mat. Iberoamericana 1, 145–201 (1985)

    Article  MATH  Google Scholar 

  27. MorawetzC.S. Strauss W.A.: Decay and scattering of solutions of a nonlinear relativistic wave equation. Commun. Pure Appl. Math. 25, 1–31 (1972)

    Article  Google Scholar 

  28. Nakanishi K., Schlag W.: Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation. J. Differ. Equ. 250(5), 2299–2333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nakanishi, K., Schlag, W.: Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. Partial Differ. Equ. Preprint, arXiv:1007.4025 (to appear)

  30. Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. Zürich Lectures in Advanced Mathematics. Europ. Math. Soc., 2011

  31. Payne L.E., Sattinger D.H.: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22(3–4), 273–303 (1975)

    Article  MathSciNet  Google Scholar 

  32. Pecher H.: Low energy scattering for nonlinear Klein–Gordon equations. J. Funct. Anal. 63(1), 101–122 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schlag W.: Stable manifolds for an orbitally unstable nonlinear Schrödinger equation. Ann. Math. (2) 169(1), 139–227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shatah J.: Unstable ground state of nonlinear Klein–Gordon equations. Trans. Am. Math. Soc. 290(2), 701–710 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  ADS  MATH  Google Scholar 

  36. Strauss, W.A.: Nonlinear wave equations. CBMS Regional Conference Series in Mathematics, Vol. 73. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence, RI, 1989

  37. Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. Dynamics Reported. Dynam. Report. Vol. 2. Ser. Dynam. Systems Appl., 2, Wiley, Chichester, 89–169, 1989

  38. Weinstein M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schlag.

Additional information

Communicated by V. Šverák

The second author was supported in part by the National Science Foundation, DMS-0617854 as well as by a Guggenheim fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, K., Schlag, W. Global Dynamics Above the Ground State for the Nonlinear Klein–Gordon Equation Without a Radial Assumption. Arch Rational Mech Anal 203, 809–851 (2012). https://doi.org/10.1007/s00205-011-0462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0462-7

Keywords

Navigation