Abstract
We extend our result Nakanishi and Schlag in J. Differ. Equ. 250(5):2299–2333, 2011) to the non-radial case, giving a complete classification of global dynamics of all solutions with energy that is at most slightly above that of the ground state for the nonlinear Klein–Gordon equation with the focusing cubic nonlinearity in three space dimensions.
Similar content being viewed by others
References
Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2), 151–218 (1975)
Ball, J.: Saddle point analysis for an ordinary differential equation in a Banach space, and an application to dynamic buckling of a beam. Nonlinear Elasticity, (Ed. Dickey R.) Academic Press, New York, 93–160, 1973
Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial differential equations. Dynamics Reported, Vol. 2. Dynam. Report. Ser. Dynam. Systems Appl., 2. Wiley, Chichester, 1–38, 1989
Beceanu, M.: New estimates for a time-dependent Schrödinger equation. Duke Math. J. Preprint, arXiv:0909.4029 (to appear)
Beceanu, M.: A critical centre-stable manifold for the Schroedinger equation in three dimensions. Commun. Pure and Applied Math. Preprint, arXiv:0909.1180 (to appear)
Berestycki H., Cazenave T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293(9), 489–492 (1981)
Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)
Bergh J., Löfström J.: Interpolation spaces. Springer, Berlin (1976)
Brenner P.: On space-time means and everywhere defined scattering operators for nonlinear Klein–Gordon equations. Math. Z. 186(3), 383–391 (1984)
Brenner P.: On scattering and everywhere defined scattering operators for nonlinear Klein–Gordon equations. J. Differ. Equ. 56(3), 310–344 (1985)
Coffman C.: Uniqueness of the ground state solution for Δu−u + u 3 = 0 and a variational characterization of other solutions. Arch. Ration. Mech. Anal. 46, 81–95 (1972)
Costin, O., Huang, M., Schlag, W.: On the spectral properties of L ± in three dimensions. Preprint, arXiv:1107.0323
Demanet L., Schlag W.: Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation. Nonlinearity 19(4), 829–852 (2006)
Duyckaerts T., Merle F.: Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787–1840 (2009)
Duyckaerts, T., Merle, F.: Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP (2008)
Ginibre J., Velo G.: The global Cauchy problem for the nonlinear Klein–Gordon equation. Math. Z. 189(4), 487–505 (1985)
Ginibre J., Velo G.: Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43(4), 399–442 (1985)
Hirsch M.W., Pugh C.C., Shub M.: Invariant manifolds. Lecture Notes in Mathematics, Vol. 583. Springer, Berlin (1977)
Ibrahim, S., Masmoudi, N., Nakanishi, K.: Scattering threshold for the focusing nonlinear Klein–Gordon equation. Analysis & PDE. Preprint, arXiv:1001.1474 (to appear)
Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966)
Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)
Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)
Krieger J., Schlag W.: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Am. Math. Soc. 19(4), 815–920 (2006)
Levine H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form \({Pu_{tt} = -A u +\mathcal{F}(u)}\) . Trans. Am. Math. Soc. 192, 1–21 (1974)
Lions P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part I. Ann. HP 1, 109–145 (1984)
Lions P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part II. Rev. Mat. Iberoamericana 1, 145–201 (1985)
MorawetzC.S. Strauss W.A.: Decay and scattering of solutions of a nonlinear relativistic wave equation. Commun. Pure Appl. Math. 25, 1–31 (1972)
Nakanishi K., Schlag W.: Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation. J. Differ. Equ. 250(5), 2299–2333 (2011)
Nakanishi, K., Schlag, W.: Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. Partial Differ. Equ. Preprint, arXiv:1007.4025 (to appear)
Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. Zürich Lectures in Advanced Mathematics. Europ. Math. Soc., 2011
Payne L.E., Sattinger D.H.: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22(3–4), 273–303 (1975)
Pecher H.: Low energy scattering for nonlinear Klein–Gordon equations. J. Funct. Anal. 63(1), 101–122 (1985)
Schlag W.: Stable manifolds for an orbitally unstable nonlinear Schrödinger equation. Ann. Math. (2) 169(1), 139–227 (2009)
Shatah J.: Unstable ground state of nonlinear Klein–Gordon equations. Trans. Am. Math. Soc. 290(2), 701–710 (1985)
Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)
Strauss, W.A.: Nonlinear wave equations. CBMS Regional Conference Series in Mathematics, Vol. 73. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence, RI, 1989
Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. Dynamics Reported. Dynam. Report. Vol. 2. Ser. Dynam. Systems Appl., 2, Wiley, Chichester, 89–169, 1989
Weinstein M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. Šverák
The second author was supported in part by the National Science Foundation, DMS-0617854 as well as by a Guggenheim fellowship.
Rights and permissions
About this article
Cite this article
Nakanishi, K., Schlag, W. Global Dynamics Above the Ground State for the Nonlinear Klein–Gordon Equation Without a Radial Assumption. Arch Rational Mech Anal 203, 809–851 (2012). https://doi.org/10.1007/s00205-011-0462-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-011-0462-7