Abstract
In this paper we study global existence of weak solutions for the quantum hydrodynamics system in two-dimensional energy space. We do not require any additional regularity and/or smallness assumptions on the initial data. Our approach replaces the WKB formalism with a polar decomposition theory which is not limited by the presence of vacuum regions. In this way we set up a self consistent theory, based only on particle density and current density, which does not need to define velocity fields in the nodal regions. The mathematical techniques we use in this paper are based on uniform (with respect to the approximating parameter) Strichartz estimates and the local smoothing property.
Similar content being viewed by others
References
Ancona M., Iafrate G.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39, 9536–9540 (1989)
Antonelli P., Marcati P.: On the finite energy weak solutions to a system in Quantum Fluid Dynamics. Comm. Math. Phys. 287(2), 657–686 (2009)
Aubin J.-P.: Un Théorème de compacité. C. R. Acad. Sci. 256, 5042–5044 (1963)
Baccarani G., Wordeman M.R.: An investigation of steady state velocity overshoot effects in Si and GaAs devices. Solid State Electron ED-29, 970–977 (1982)
Brenier Y.: Polar factorization and monotone rearrangement of vector-valued function. Comm. Pure Appl. Math. 44, 375–417 (1991)
Carlen E.: Conservative diffusions. Comm. Math. Phys. 94, 293–315 (1984)
Carlen E., Loss M.: Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on \({{\mathbb{S}^n}^n}\) . Geom. Funct. Anal. 2(1), 90–104 (1992)
Cazenave T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, AMS, 2003
Constantin P., Saut J.-C.: Local smoothing properties of dispersive equations. J. Am. Math. Soc. 1, 413–439 (1988)
Dalfovo F., Giorgini S., Pitaevskii L., Stringari S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)
Degond P., Gallego S., Méhats F.: Isothermal quantum hydrodynamics: derivation, asymptotic analysis, and simulation. Multiscale Model. Simul. 6(1), 246–272 (2007)
Feynman R.P.: Superfluidity and superconductivity. Rev. Mod. Phys. 29(2), 205 (1957)
Gardner C.: The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54, 409–427 (1994)
Gasser I., Markowich P.: Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptot. Anal. 14(2), 97–116 (1997)
Ginibre J., Velo G.: The global Cauchy problem for the nonlinear Schrödinger equations revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 309–327 (1987)
Jüngel A., Mariani M.C., Rial D.: Local existence of solutions to the transient quantum hydrodynamic equations. Math. Models Methods Appl. Sci. 12(4), 485–495 (2002)
Jüngel A., Matthes D., Milisic J.P.: Derivation of new quantum hydrodynamic equations using entropy minimization. SIAM J. Appl. Math. 67(1), 46–68 (2006)
Kadanoff L.P., Baym G.: Quantum Statistical Mechanics. Benjamin, New York (1962)
Khalatnikov I.M.: An introduction to the Theory of Superfluidity. Benjamin, New York (1965)
Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)
Landau L.D.: Theory of the superfluidity of helium II. Phys. Rev. 60, 356 (1941)
Li H.L., Marcati P.: Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors. Comm. Math. Phys. 245(2), 215–247 (2004)
Madelung E.: Quantentheorie in hydrodynamischer form. Z. Physik 40, 322 (1927)
Rakotoson J.M., Temam R.: An optimal compactness theorem and application to elliptic-parabolic systems. Appl. Math. Lett. 14, 303–306 (2001)
Sjölin P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)
Tao, T.: Nonlinear dispersive equations: local and global analysis.CBMS regional conference series in mathematics, vol. 106. Published for the Conference Board of the Mathematical Sciences, By the American Mathematical Society, Providence, RI, xvi+373 pp. Washington, DC, 2006
Taylor M.E.: Pseudodifferential operators and nonlinear PDEs. Progress in Mathematics, vol. 100. Birkäuser, Basel (1991)
Teufel S., Tumulka R.: Simple proof for global existence of bohmian trajectories. Comm. Math. Phys. 258, 349–365 (2005)
Vega L.: Schrödinger equations: pointwise convergence to the initial data. Proc. AMS 102(4), 874–878 (1988)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Dafermos
Paolo Antonelli is supported by Award No. KUK-I1-007-43, funded by the King Abdullah University of Science and Technology (KAUST).
Rights and permissions
About this article
Cite this article
Antonelli, P., Marcati, P. The Quantum Hydrodynamics System in Two Space Dimensions. Arch Rational Mech Anal 203, 499–527 (2012). https://doi.org/10.1007/s00205-011-0454-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-011-0454-7