Skip to main content
Log in

The Motion of a Fluid–Rigid Disc System at the Zero Limit of the Rigid Disc Radius

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the two-dimensional motion of the coupled system of a viscous incompressible fluid and a rigid disc moving with the fluid, in the whole plane. The fluid motion is described by the Navier–Stokes equations and the motion of the rigid body by conservation laws of linear and angular momentum. We show that, assuming that the rigid disc is not allowed to rotate, as the radius of the disc goes to zero, the solution of this system converges, in an appropriate sense, to the solution of the Navier–Stokes equations describing the motion of only fluid in the whole plane. We also prove that the trajectory of the centre of the disc, at the zero limit of its radius, coincides with a fluid particle trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Conca C., San Martin J., Tucsnak M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differ. Equ. 25, 1019–1042 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Desjardins B., Esteban M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Rational Mech. Anal. 146, 59–71 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Desjardins B., Esteban M.J.: On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differ. Equ. 25(7–8), 1399–1413 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Feireisl E.: On the motion of rigid bodies in a viscous fluid. Mathematical theory in fluid mechanics (Paseky, 2001). Appl. Math. 47, 463–484 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Linearized steady problems, vol. I. In: Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994

  7. Galdi, G.P., Silvestre, A.L.: Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. In: Nonlinear Problems in Mathematical Physics and Related Topics, vol. I, 121–144. Int. Math. Ser. (N.Y.), 1. Kluwer, New York, 2002

  8. Grandmont C., Maday Y.: Existence for an unsteady fluid-structure interaction problem. Math. Model. Numer. Anal. 34(3), 609–636 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gunzburger M.D., Lee H.-C., Seregin G.A.: Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2(3), 219–266 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Hoffmann K.-H., Starovoitov V.N.: On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9(2), 633–648 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Iftimie D., Lopes Filho M.C., Nussenzveig Lopes H.J.: Two-dimensional incompressible viscous flow around a small obstacle. Math. Ann. 336(2), 449–489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Judakov, N.V.: The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid. Dinamika Splošn. Sredy Vyp. 18 Dinamika Zidkost. so Svobod. Granicami 249–253, 255 (1974)

  13. Renardy, M., Rogers, R.C.: An introduction to partial differential equations, 2nd edn. In: Texts in Applied Mathematics, vol. 13. Springer-Verlag, New York, 2004

  14. Robinson, J.C.: Infinite-dimensional dynamical systems. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001

  15. Robinson J.C.: A coupled particle-continuum model: well-posedness and the limit of zero radius. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2045), 1311–1334 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. San Martn J.A., Starovoitov V., Tucsnak M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rational Mech. Anal. 161(2), 113–147 (2002)

    Article  ADS  Google Scholar 

  17. Serre D.: Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Jpn. J. Appl. Math. 4(1), 99–110 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Takahashi T.: Existence of strong solutions for the problem of a rigid-fluid system. C.R. Acad. Sci. Paris Ser. I 336, 453–458 (2003)

    MATH  Google Scholar 

  19. Takahashi T., Tucsnak M.: Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6, 53–77 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Temam R.: Navier-Stokes Equations. AMS Chelsea Publishing, Providence (1977)

    MATH  Google Scholar 

  21. Ziemer W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation. In: Graduate Texts in Mathematics, vol. 120. Springer-Verlag, New York, 1989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Dashti.

Additional information

Communicated by P.-L. Lions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dashti, M., Robinson, J.C. The Motion of a Fluid–Rigid Disc System at the Zero Limit of the Rigid Disc Radius. Arch Rational Mech Anal 200, 285–312 (2011). https://doi.org/10.1007/s00205-011-0401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0401-7

Keywords

Navigation