Skip to main content

Advertisement

Log in

Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This article is devoted to the study of the asymptotic behavior of a class of energies defined on stochastic lattices. Under polynomial growth assumptions, we prove that the energy functionals \({F_\varepsilon}\) stored in the deformation of an \({{\varepsilon}}\)-scaling of a stochastic lattice Γ-converge to a continuous energy functional when \({{\varepsilon}}\) goes to zero. In particular, the limiting energy functional is of integral type, and deterministic if the lattice is ergodic. We also generalize, to systems and nonlinear settings, well-known results on stochastic homogenization of discrete elliptic equations. As an application of the main result, we prove the convergence of a discrete model for rubber towards the nonlinear theory of continuum mechanics. We finally address some mechanical properties of the limiting models, such as frame-invariance, isotropy and natural states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akcoglu M.A., Krengel U.: Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 53–67 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alicandro R., Cicalese M.: A general integral representation result for the continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36(1), 1–37 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alicandro R., Cicalese M., Gloria A.: Mathematical derivation of a rubber-like stored energy functional. C. R. Acad. Sci. Paris, Série I 345(8), 479–482 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Alicandro R., Focardi M., Gelli M.S.: Finite-difference approximation of energies in fracture mechanics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(3), 671–709 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Bergström J.S., Boyce M.C.: Mechanical behavior of particle filled elastomers. Rubber Chem. Technol. 72, 633–656 (1999)

    Article  Google Scholar 

  6. Blanc X., Le Bris C., Lions P.L.: Du discret au continu pour des réseaux aléatoires d’atomes. C. R. Acad. Sci. Paris, Série I 342, 627–633 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Blanc X., Le Bris C., Lions P.L.: Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques. C. R. Acad. Sci. Paris Sér. I 343, 717–724 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Blanc X., Le Bris C., Lions P.L.: The energy of some microscopic stochastic lattices. Arch. Ration. Mech. Anal. 184(2), 303–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blanc X., Le Bris C., Lions P.L.: Stochastic homogenization and random lattices. J. Math. Pures Appl. 88(1), 34–63 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Böl M., Reese S.: New method for simulation of Mullins effect using finite element method. Plast. Rubber Compos. 34(8), 343–348 (2005)

    Article  Google Scholar 

  11. Böl M., Reese S.: Finite element modelling of rubber-like polymers based on chain statistics. Int. J. Sol. Struct. 43, 2–26 (2006)

    Article  MATH  Google Scholar 

  12. Braides, A.: Γ-convergence for Beginners, volume 22 of Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford, 2002

  13. Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals, volume 12 of Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford, 1998

  14. Braides A., Gelli M.S.: Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7(1), 41–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Braides A., Gelli M.S.: Limits of discrete systems with long range interactions. J. Convex Anal. 9(2), 363–399 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Braides A., Lew A.J., Ortiz M.: Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180(2), 151–182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Braides A., Solci M., Vitali E.: A derivation of linear elastic energies from pair-interaction atomistic systems. Netw. Heterog. Media 2(3), 551–567 (2006)

    MathSciNet  Google Scholar 

  18. Buttazzo, G.: Integral Representation Theory for Some Classes of Local Functions, volume 244 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., 1992

  19. Caillerie D., Mourad A., Raoult A.: Cell-to-muscle homogenization. Application to a constitutive law for the myocardium. M2AN Math. Model. Numer. Anal. 37(4), 681–698 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ciarlet, P.G.:. Mathematical Elasticity. Volume I: three-dimensional elasticity, volume 20 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1988

  21. Cioranescu, D., Saint Jean Paulin, J.: Homogenization of Reticulated Structures, volume 136 of Applied Mathematical Sciences. Springer, New-York, 1999

  22. Conti S., Dolzmann G., Kirchheim B., Müller S.: Sufficient conditions for the validity of the Cauchy-Born rule close to SO(n). J. Eur. Math. Soc. 8, 515–530 (2006)

    Article  MATH  Google Scholar 

  23. Dal Maso G., Modica L.: Integral functionals determined by their minima. Rend. Semin. Mat. Univ. 76, 255–267 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Dal Maso G., Modica L.: Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368, 28–42 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Delone B.N., Dolbilin N.P., Štogrin M.I., Galiulin R.V.: A local test for the regularity of a system of points. Dokl. Akad. Nauk SSSR 227(1), 19–21 (1976)

    MathSciNet  Google Scholar 

  26. E W., Ming P.: Cauchy-Born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal. 183(2), 241–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Edwards S.F.: Dynamical theory of rubber elasticity. Polym. J. 17(1), 271–276 (1985)

    Article  Google Scholar 

  28. Flory, P.J.: Statistical Mechanics of Chain Molecules. Interscience Publishers, New York, 1969

  29. Friesecke G., Theil F.: Validity and failure of the Cauchy-Born rule. J. Nonlinear Sci. 12, 445–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gloria A.: A direct approach to numerical homogenization in finite elasticity. Netw. Heterog. Media. 1, 109–141 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gloria, A.: Stochastic Diffeomorphisms and Homogenization of Multiple Integrals. Applied Math. Res. Expr., 2008. Article ID abn001

  32. Gloria, A., Le Tallec, P., Vidrascu, M.: Comparison of discrete models for rubber. In preparation

  33. Iosifescu O., Licht C., Michaille G.: Variational limit of a one-dimensional discrete and statistically homogeneous system of material points. C. R. Math. Acad. Sci. Paris 32, 575–580 (2001)

    MathSciNet  Google Scholar 

  34. Iosifescu O., Licht C., Michaille G.: Variational limit of a one-dimensional discrete and statistically homogeneous system of material points. Asymptot. Anal. 28, 309–329 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Kozlov S.M.: Averaging of difference schemes. Math. USSR Sbornik 57(2), 351–369 (1987)

    Article  MATH  Google Scholar 

  36. Kuhn W., Grün F.: Beziehung zwischen elastische Konstanten und Dehnungsdoppelberechnung Eigenschaften hochpolymerer Stoffe. Kolloid-Zeitschrift 101, 248–271 (1942)

    Article  Google Scholar 

  37. Künnemann R.: The diffusion limit for reversible jump processes on \({{\mathbb{Z}^d}}\) with ergodic random bond conductivities. Commun. Math. Phys. 90, 27–68 (1983)

    Article  ADS  MATH  Google Scholar 

  38. Martinsson P.-G., Babuška I.: Homogenization of materials with periodic truss or frame micro-structures. Math. Models Methods Appl. Sci. 17(5), 805–832 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Martinsson P.-G., Babuška I.: Mechanics of materials with periodic truss or frame micro-structures. Arch. Ration. Mech. Anal. 185(2), 201–234 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mizel V.J.: On the ubiquity of fracture in nonlinear elasticity. J. Elasticity 52, 257–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Møller J.: Lectures on Random Voronoi Tessalations, volume 87 of Lecture Notes in Statistics. Springer, New York (1994)

    Book  Google Scholar 

  42. Okabe, A., Boots, B., Sugihara, K., Nok Chiu, S.: Spatial Tesselations: Concepts and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics. Wiley, Chichester, 2000

  43. Penrose M.R.: Random parking, sequential adsorption, and the Jamming limit. Commun. Math. Phys. 218, 153–176 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Theil F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Treloar L.R.G.: The Physics of Rubber Elasticity. Oxford at the Clarendon Press, Oxford (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Alicandro.

Additional information

Communicated by S. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alicandro, R., Cicalese, M. & Gloria, A. Integral Representation Results for Energies Defined on Stochastic Lattices and Application to Nonlinear Elasticity. Arch Rational Mech Anal 200, 881–943 (2011). https://doi.org/10.1007/s00205-010-0378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0378-7

Keywords

Navigation