Archive for Rational Mechanics and Analysis

, Volume 200, Issue 2, pp 491–532 | Cite as

Existence and Stability of Viscoelastic Shock Profiles

  • Blake Barker
  • Marta Lewicka
  • Kevin ZumbrunEmail author


We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic–parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and nonclassical type shock profiles.


Nonlinear Stability Parabolic System Evans Function Viscous Stress Tensor Spectral Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander J., Gardner R., Jones C.K.R.T.: A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410, 167–212 (1990)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alexander J.C., Sachs R.: Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation. Nonlinear World 2(4), 471–507 (1995)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Azevedo A., Marchesin D., Plohr B., Zumbrun K.: Long-lasting diffusive solutions for systems of conservation laws. VI Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 1999). Math. Contemp. 18, 1–29 (2000)zbMATHGoogle Scholar
  4. 4.
    Antmann, S.: Real artificial viscosity for the equations of nonlinear elasticity. draft (2010)Google Scholar
  5. 5.
    Antmann S., Malek-Madani R.: Travelling waves in nonlinearly viscoelastic media and shock structure in elastic media. Quart. Appl. Math. 46, 77–93 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ball J.M.: Some Open Problems in Elasticity, pp. 3–59. Geometry, Mechanics (2002)zbMATHGoogle Scholar
  7. 7.
    Barker, B., Humpherys, J., Zumbrun, K.: One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics preprint (2009)Google Scholar
  8. 8.
    Barker B., Humpherys J., Rudd K., Zumbrun K.: Stability of viscous shocks in isentropic gas dynamics. Commun. Math. Phys. 281(1), 231–249 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bridges T.J., Derks G., Gottwald G.: Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Phys. D 172(1–4), 190–216 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barker, B., Lafitte, O., Zumbrun, K.: Stability of 2d viscous isentropic MHD shocks with infinite electrical resistivity, preprint (2009)Google Scholar
  11. 11.
    Beyn W.-J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Analysis 9, 379–405 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Beyn W.-J.: Zur stabilit at von differenenverfahren für systeme linearer gewöhnlicher randwertaufgaben. Numer. Math. 29, 209–226 (1978)CrossRefzbMATHGoogle Scholar
  13. 13.
    Brin L.Q.: Numerical testing of the stability of viscous shock waves. Math. Comput. 70(235), 1071–1088 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Brin, L., Zumbrun, K.: Analytically varying eigenvectors and the stability of viscous shock waves. Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001). Math. Contemp. 22, 19–32 (2002)zbMATHGoogle Scholar
  15. 15.
    Carr, J., Gurtin, M., Slemrod, M.: Structured phase transitions on a finite interval. Arch. Ration. Mech. Anal. (86), 317–351 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Conley C.C., Smoller J.: On the structure of magnetohydrodynamic shock waves. Comm. Pure Appl. Math 27, 367–375 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Conley C.C., Smoller J.: On the structure of magnetohydrodynamic shock waves, II. J. Math. Pures Appl. 9(4), 429–443 (1975)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Costanzino, N., Humpherys, J., Nguyen, T., Zumbrun, K.: Spectral stability of noncharacteristic boundary layers of isentropic Navier–Stokes equations. Arch. Rat. Mechanics and Anal. (to appear)Google Scholar
  19. 19.
    Dafermos C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (1999)zbMATHGoogle Scholar
  20. 20.
    Evans J.W., Feroe J.A.: Traveling waves of infinitely many pulses in nerve equations. Math. Biosci. 37, 23–50 (1977)CrossRefzbMATHGoogle Scholar
  21. 21.
    Freistühler, H.: Dynamical stability and vanishing viscosity: a case study of a non-strictly hyperbolic system. Comm. Pure Appl. Math. 45 (1992)Google Scholar
  22. 22.
    Freistühler H., Plaza R.: Normal modes and nonlinear stability behaviour of dynamic phase boundaries in elastic materials. Arch. Ration. Mech. Anal. 186(1), 1–24 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Freistühler H., Szmolyan P.: Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal. 26(1), 112–128 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gardner R., Jones C.K.R.T.: A stability index for steady state solutions of boundary value problems for parabolic systems. J. Differ. Equ. 91(2), 181–203 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gardner R., Jones C.K.R.T.: Traveling waves of a perturbed diffusion equation arising in a phase field model. Ind. Univ. Math. J. 38(4), 1197–1222 (1989)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Gardner R., Zumbrun K.: The Gap Lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51(7), 797–855 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Germain, P.: Contribution à la théorie des ondes de choc en magnétodynamique des fluides. ONERA Publ. No. 97, Office Nat. d’Etudes et Recherche Aérospatiales, Châtillon, 1959Google Scholar
  28. 28.
    Hale, N., Moore, D.R.: A sixth-order extension to the matlab package bvp4c of j. kierzenka and l. shampine. Technical Report NA-08/04, Oxford University Computing Laboratory, May 2008Google Scholar
  29. 29.
    Humpherys, J., Lafitte, O., Zumbrun, K.: Stability of viscous shock profiles in the high Mach number limit. Comm. Math. Phys.; published online (2009, to appear)Google Scholar
  30. 30.
    Humpherys, J., Lyng, G., Zumbrun, K.: Spectral stability of ideal gas shock layers. Arch. Ration. Mech. Anal. (to appear)Google Scholar
  31. 31.
    Humpherys J., Zumbrun K.: Spectral stability of small amplitude shock profiles for dissipative symmetric hyperbolic–parabolic systems. Z. Angew. Math. Phys. 53, 20–34 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Humpherys J., Zumbrun K.: An efficient shooting algorithm for Evans function calculations in large systems. Phys. D 220(2), 116–126 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1885)Google Scholar
  34. 34.
    Kierzenka J., Shampine L.F.: A BVP solver that controls residual and error. JNAIAM J. Numer. Anal. Ind. Appl. Math. 3(1–2), 27–41 (2008)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Liu T.P., Zumbrun K.: On nonlinear stability of general undercompressive viscous shock waves. Commun. Math. Phys. 174, 319–345 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Lyng G., Raoofi M., Texier B., Zumbrun K.: Pointwise Green function bounds and stability of combustion waves. J. Differ. Equ. 233(2), 654–698 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Mascia C., Zumbrun K.: Stability of small-amplitude shock profiles of symmetric hyperbolic–parabolic systems. Comm. Pure Appl. Math. 57(7), 841–876 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Mascia C., Zumbrun K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169(3), 177–263 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mascia C., Zumbrun K.: Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal. 172(1), 93–131 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Oh M., Zumbrun K.: Stability of periodic solutions of viscous conservation laws with viscosity. 1. Analysis of the Evans function. Arch. Ration. Mech. Anal. 166(2), 99–166 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pego R.L., Smereka P., Weinstein M.I.: Oscillatory instability of traveling waves for a KdV-Burgers equation. Phys. D 67(1-3), 45–65 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Raoofi M.: Lp asymptotic behavior of perturbed viscous shock profiles. J. Hyperbolic Differ. Equ. 2(3), 595–644 (2005) preprintMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Raoofi, M., Zumbrun, K.: Stability of undercompressive viscous shock profiles of hyperbolic–parabolic systems. J. Differ. Equ., pp. 1539–1567 (2009)Google Scholar
  44. 44.
    Sattinger D.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Shampine L.F., Gladwell I., Thompson S.: Solving ODEs with MATLAB. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  46. 46.
    Slemrod, M.: Dynamics of first-order phase transitions. In: Phase Transitions and Material Instabilities in Solids (ed. Gurtin M.E.), pp. 163–203. Academic Press, New York, 1984Google Scholar
  47. 47.
    Sternberg P., Zumbrun K.: Connectivity of phase boundaries in strictly convex domains. Arch. Ration. Mech. Anal. 141(4), 375–400 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. 3rd edition. Edited and with a preface by Stuart S. Antman. Springer-Verlag, Berlin, 2004. xxx+602 pp. ISBN: 3-540-02779-3Google Scholar
  49. 49.
    Zumbrun, K.: A local greedy algorithm and higher order extensions for global numerical continuation of analytically varying subspaces. Quart. Appl. Math. (to appear)Google Scholar
  50. 50.
    Zumbrun, K.: Numerical error analysis for evans function computations: a numerical gap lemma, centered-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization preprint, 2009Google Scholar
  51. 51.
    Zumbrun, K.: Stability of large-amplitude shock waves of compressible Navier–Stokes equations with an appendix by Helge Kristian Jenssen and Gregory Lyng. In: Handbook of Mathematical Fluid Dynamics, vol. III, pp. 311–533. North-Holland, Amsterdam, 2004Google Scholar
  52. 52.
    Zumbrun K.: Dynamical stability of phase transitions in the p-system with viscosity-capillarity. SIAM J. Appl. Math. 60(6), 1913–1924 (2000) (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Math. J. V47, 741–871 (1998); Errata, Indiana Univ. Math. J. 51(4), 1017–1021 (2002)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Indiana UniversityBloomingtonUSA
  2. 2.Department of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations