Skip to main content
Log in

Broadwell Model and Conservative Supersonic Boundary

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider an initial-boundary value problem for the Broadwell model with a supersonic physical boundary. Here, we pose a conservative boundary condition which preserves the total number of particles. We show that the solution converges pointwise to a boundary layer exponentially, when the perturbations of the initial data to the equilibrium state are sufficiently small, by using Green’s function as established in Lan et al. (Netw Heterog Media 1:167–183, 2006), weighted energy estimates and by constructing a pair of anti-derivatives to convert the conservative boundary condition into a dissipative boundary condition with conservation laws together with an a priori chosen boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broadwell J.E.: Shock structure in a simple discrete velocity gas. Phys. Fluids 7, 1243–1247 (1964)

    Article  ADS  MATH  Google Scholar 

  2. Caflisch R.E., Liu T.-P.: Stability of shock waves for the Broadwell equations. Comm. Math. Phys. 114(1), 103–130 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Caflisch R.E.: Navier–Stokes and Boltzmann shock profiles for a model of gas dynamics. Comm. Pure Appl. Math. 32(4), 521–554 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Cercignani C.: The Boltzmann Equation and its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  5. Deng S.-J., Wang W.-K.: The Broadwell model with a subsonic boundary. Nonlinear Anal. 69(11), 3849–3865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng S.-J., Wang W.-K., Yu S.-H.: Pointwise convergence to a Maxwellian for a Broadwell model with a supersonic boundary. Netw. Heterog. Media 2(3), 383–395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goodman J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95(4), 325–344 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Kawashima S., Matsumura A.: Asymptotic stability of travelling wave solutions of a system of one-dimensional gas motion. Comm. Math. Phys. 101, 97–127 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Lan C.-Y., Lin H.-E., Yu S.-H.: The Green’s functions for the Broadwell model in half space problem. Networks and Heterogeneous Media 1, 167–183 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu J.-G., Xin Z.-P.: Boundary-layer behavior in the fluid-dynamic limit for a nonlinear model Boltzmann equation. Arch. Rational Mech. Anal. 135(1), 61–105 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Liu T.-P.: Pointwise convergence to shock waves for viscous conservation laws. Comm. Pure Appl. Math. 50, 1113–1182 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu T.-P., Yu S.-H.: Boltzmann equation: micro-macro decompositions and positivity of shock profiles. Comm. Math. Phys. 246, 133–179 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Liu T.-P., Yu S.-H.: The Green’s function and large-time behavior of solutions for one-dimensional Boltzmann equation. Comm. Pure Appl. Math. 57, 1543–1608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu T.-P., Yu S.-H.: Green’s function and large-time behavior of solutions of Boltzmann equation, 3-D waves. Bull. Inst. Math. Acad. Sinica(N.s.) 1(1), 1–78 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Matsumura A.: Asymptotics toward rarefaction wave of solutions of the Broadwell model of a discrete velocity gas. Jpn. J. Appl. Math. 4, 489–502 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matsumura A., Nishihara K.: On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Jpn. J. Appl. Math. 2(1), 17–25 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Platkowski T., Illner R.: Discrete velocity models of the Boltzmann equation: a survey of the mathematical aspects of the theory. SIAM Rev. 30, 213–255 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Slemrod M., Tzavaras A.E.: Self-similiar fluid-dynamic limits for the Broadwell system. Arch. Ration. Mech. Anal. 122(4), 353–392 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Slemrod M.: Large time behavior of the Broadwell model of a discrete velocity gas with specularly reflective boundary conditions. Arch. Ration. Mech. Anal 111(4), 323–342 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tzavaras A.E.: Wave structure induced by fluid-dynamic limits in the Broadwell model. Arch. Ration. Mech. Anal. 127, 361–387 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xin Z.-P.: The fluid-dynamic limit of the Broadwell model of the nonlinear Boltzmann equation in the presence of shocks. Comm. Pure Appl. Math. 44(6), 679–713 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sone Y.: Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002)

    Book  MATH  Google Scholar 

  23. Sone Y.: Molecular Gas Dynamics: Theory, Techniques and Applications. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Hsien Yu.

Additional information

Communicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, S., Wang, W. & Yu, SH. Broadwell Model and Conservative Supersonic Boundary. Arch Rational Mech Anal 200, 203–223 (2011). https://doi.org/10.1007/s00205-010-0344-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0344-4

Keywords

Navigation