Abstract
We obtain C 1,α regularity estimates for nonlocal elliptic equations that are not necessarily translation-invariant using compactness and perturbative methods and our previous regularity results for the translation-invariant case.
Similar content being viewed by others
References
Barles, G., Chasseigne, E., Imbert, C.: Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. (to appear)
Caffarelli L., Silvestre L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)
Caffarelli L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (2) 130(1), 189–213 (1989)
Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, Vol. 43. American Mathematical Society, Providence, RI, 1995
Cordes H.O.: Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen. Math. Ann. 131, 278–312 (1956)
Kassmann M.: A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differ. Equ. 34(1), 1–21 (2009)
Mikulyavichyus R., Pragarauskas G.: Nonlinear potentials of the Cauchy–Dirichlet problem for the Bellman integro-differential equation. Liet. Mat. Rink. 36(2), 178–218 (1996)
Nirenberg, L.: On a generalization of quasi-conformal mappings and its application to elliptic partial differential equations. In Contributions to the Theory of Partial Differential Equations. Annals of Mathematics Studies, Vol. 33. Princeton University Press, Princeton, 95–100, 1954
Silvestre L.: Hölder estimates for solutions of integro-differential equations like the fractional laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by L. Ambrosio
Rights and permissions
About this article
Cite this article
Caffarelli, L., Silvestre, L. Regularity Results for Nonlocal Equations by Approximation. Arch Rational Mech Anal 200, 59–88 (2011). https://doi.org/10.1007/s00205-010-0336-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-010-0336-4