Skip to main content
Log in

Regularity Results for Nonlocal Equations by Approximation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We obtain C 1,α regularity estimates for nonlocal elliptic equations that are not necessarily translation-invariant using compactness and perturbative methods and our previous regularity results for the translation-invariant case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barles, G., Chasseigne, E., Imbert, C.: Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. (to appear)

  2. Caffarelli L., Silvestre L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (2) 130(1), 189–213 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, Vol. 43. American Mathematical Society, Providence, RI, 1995

  5. Cordes H.O.: Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen. Math. Ann. 131, 278–312 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kassmann M.: A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differ. Equ. 34(1), 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mikulyavichyus R., Pragarauskas G.: Nonlinear potentials of the Cauchy–Dirichlet problem for the Bellman integro-differential equation. Liet. Mat. Rink. 36(2), 178–218 (1996)

    MathSciNet  Google Scholar 

  8. Nirenberg, L.: On a generalization of quasi-conformal mappings and its application to elliptic partial differential equations. In Contributions to the Theory of Partial Differential Equations. Annals of Mathematics Studies, Vol. 33. Princeton University Press, Princeton, 95–100, 1954

  9. Silvestre L.: Hölder estimates for solutions of integro-differential equations like the fractional laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Silvestre.

Additional information

Communicated by L. Ambrosio

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffarelli, L., Silvestre, L. Regularity Results for Nonlocal Equations by Approximation. Arch Rational Mech Anal 200, 59–88 (2011). https://doi.org/10.1007/s00205-010-0336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0336-4

Keywords

Navigation