Skip to main content
Log in

Scale-Transformations in the Homogenization of Nonlinear Magnetic Processes

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A class of nonlinear first-order processes is formulated as a minimization principle. In the presence of oscillating data, a two-scale model is then derived, via Nguetseng’s notion of two-scale convergence. The dependence on the fine-scale variable is eliminated by averaging with respect to the fine-scale (scale-integration or upscaling); conversely, any two-scale solution is retrieved from a coarse-scale one (scale-disintegration or downscaling). These results are first developed in a general functional framework, and are then applied to the homogenization of a relaxation dynamics in magnetic composites:

$$ \mathcal{A}(x/\varepsilon) {\partial B_\varepsilon\over \partial t} + \alpha(B_\varepsilon, x/\varepsilon) \ni H_\varepsilon $$
$$ \nabla \cdot B_\varepsilon=0, \quad \nabla \times H_\varepsilon =J(x) \quad \forall\;\varepsilon > 0. $$

Here J is a prescribed current density. \({\mathcal{A}(y)}\) is a positive-definite symmetric tensor, α(·, y) is a maximal monotone operator; both are assumed to depend periodically on the fine-scale variable y. The homogenized problem consists in coupling the magnetostatic equations with a maximal monotone relation \({B\in \gamma(H)}\) that is local in space but not in time. This scale-transformation procedure is also interpreted in terms of (single-scale) Γ-convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G.: Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal. 23, 1482–1518 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Allaire G.: Shape Optimization by the Homogenization Method. Springer, New York (2002)

    MATH  Google Scholar 

  3. Allaire G., Briane M.: Multiscale convergence and reiterated homogenization. Proc. Roy. Soc. Edinb. A 126, 297–342 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Ambrosio L., D’Ancona P., Mortola S.: Gamma-convergence and the least squares method. Ann. Math. Pura Appl. 166(4), 101–127 (1994)

    MATH  MathSciNet  Google Scholar 

  5. Amirat Y., Hamdache K., Ziani A.: Some results on homogenization of convection–diffusion equations. Arch. Ration. Mech. Anal. 114, 155–178 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arbogast T., Douglas J., Hornung U.: Derivation of the double porosity model of single phase flow via homogenization theory. S.I.A.M. J. Math. Anal. 21, 823–836 (1990)

    MATH  MathSciNet  Google Scholar 

  7. Attouch H.: Variational Convergence for Functions and Operators. Pitman, Boston (1984)

    MATH  Google Scholar 

  8. Aubin J.-P., Ekeland I.: Second-order evolution equations associated with convex Hamiltonians. Can. Math. Bull. 23, 81–94 (1980)

    MATH  MathSciNet  Google Scholar 

  9. Auchmuty G.: Saddle-points and existence-uniqueness for evolution equations. Differ. Integr. Eq. 6, 1161–1171 (1993)

    MATH  MathSciNet  Google Scholar 

  10. Babuška, I.: Homogenization and its application. Mathematical and Computational Problems. Numerical Solution of Partial Differential Equations III (College Park, Md., 1975). Academic Press, New York, 89–116, 1976

  11. Baía M., Fonseca I.: The limit behavior of a family of variational multiscale problems. Indiana Univ. Math. J. 56, 1–50 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bakhvalov N., Panasenko G.: Homogenisation: Averaging Processes in Periodic Media. Kluwer, Dordrecht (1989)

    MATH  Google Scholar 

  13. Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976)

    MATH  Google Scholar 

  14. Bensoussan G., Lions J.L., Papanicolaou G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  15. Braides A.: Γ-Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  16. Braides A., Defranceschi A.: Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  17. Brezis H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  18. Brezis H.: Problèmes unilatéraux. J. Math. Pures Appl. 51(9), 1–168 (1972)

    MathSciNet  Google Scholar 

  19. Brezis, H., Ekeland, I.: Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps, and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B 282, 971–974, and ibid. 1197–1198 (1976)

  20. Browder, F.: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Sym. Pure Math., XVIII Part II. AMS, Providence, 1976

  21. Burachik R.S., Svaiter B.F.: Maximal monotonicity, conjugation and the duality product. Proc. Am. Math. Soc. 131, 2379–2383 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cherkaev, A., Kohn, R. (eds): Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  23. Chiadò Piat V., Sandrakov G.V.: Homogenization of some variational inequalities for elasto-plastic torsion problems. Asymptot. Anal. 40, 1–23 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Cioranescu D., Damlamian A., De Arcangelis R.: Homogenization of nonlinear integrals via the periodic unfolding method. C.R. Acad. Sci. Paris, Ser. I 339, 77–82 (2004)

    MATH  MathSciNet  Google Scholar 

  25. Cioranescu D., Damlamian A., De Arcangelis R.: Homogenization of quasiconvex integrals via the periodic unfolding method. S.I.A.M. J. Math. Anal. 37, 1435–1453 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Cioranescu D., Damlamian A., Griso G.: Periodic unfolding and homogenization. C.R. Acad. Sci. Paris, Ser. I 335, 99–104 (2002)

    MATH  MathSciNet  Google Scholar 

  27. Cioranescu D., Damlamian A., Griso G.: The periodic unfolding method in homogenization. S.I.A.M. J. Math. Anal. 40, 1585–1620 (2008)

    MATH  MathSciNet  Google Scholar 

  28. Cioranescu D., Donato P.: An Introduction to Homogenization. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  29. Dal Maso G.: An Introduction to Γ-Convergence. Birkhäuser, Boston (1993)

    Google Scholar 

  30. De Giorgi E., Franzoni T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58(8), 842–850 (1975)

    MATH  MathSciNet  Google Scholar 

  31. De Giorgi E., Spagnolo S.: Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 8, 391–411 (1973)

    MATH  MathSciNet  Google Scholar 

  32. Ekeland I., Temam R.: Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris (1974)

    Google Scholar 

  33. Fenchel W.: Convex Cones, Sets, and Functions. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  34. Fitzpatrick, S.: Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59–65, In: Proceedings of the Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988

  35. Ghoussoub N.: A variational theory for monotone vector fields. J. Fixed Point Theory Appl. 4, 107–135 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ghoussoub N.: Selfdual Partial Differential Systems and their Variational Principles. Springer, Heidelberg (2008)

    Google Scholar 

  37. Ghoussoub N., Tzou L.: A variational principle for gradient flows. Math. Ann. 330, 519–549 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hiriart-Urruty J.-B., Lemarechal C.: Convex Analysis and Optimization Algorithms. Springer, Berlin (1993)

    Google Scholar 

  39. Jikov V.V., Kozlov S.M., Oleinik O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Google Scholar 

  40. Kolpakov A.G.: Stressed Composite Structures. Springer, Berlin (2004)

    Google Scholar 

  41. Lions, J.L.: Some Methods in the Mathematical Analysis of Systems and their Control. Kexue Chubanshe (Science Press), Beijing; Gordon and Breach Science Publishers, New York, 1981

  42. Lukkassen D., Nguetseng G., Wall P.: Two-scale convergence. Int. J. Pure Appl. Math. 2, 35–86 (2002)

    MATH  MathSciNet  Google Scholar 

  43. Martinez-Legaz J.-E., Svaiter B.F.: Monotone operators representable by l.s.c. convex functions. Set-Valued Anal. 13, 21–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Martinez-Legaz J.-E., Svaiter B.F.: Minimal convex functions bounded below by the duality product. Proc. Am. Math. Soc. 136, 873–878 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Mascarenhas M.L.: A linear homogenization problem with time dependent coefficient. Trans. Am. Math. Soc. 281, 179–195 (1984)

    MATH  MathSciNet  Google Scholar 

  46. Mascarenhas M.L.: Memory effect phenomena and Γ-convergence. Proc. R. Soc. Edinb. Sect. A 123, 311–322 (1993)

    MATH  MathSciNet  Google Scholar 

  47. Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  48. Murat, F., Tartar, L.: H-convergence. In [22], 21–44

  49. Nayroles B.: Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B 282, A1035–A1038 (1976)

    MathSciNet  Google Scholar 

  50. Nguetseng G.: A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal. 20, 608–623 (1989)

    MATH  MathSciNet  Google Scholar 

  51. Oleinik O.A., Shamaev A.S., Yosifian G.A.: Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992)

    Google Scholar 

  52. Pavliotis G.A., Stuart A.M.: Multiscale Methods. Averaging and Homogenization. Springer, New York (2008)

    MATH  Google Scholar 

  53. Penot J.-P.: A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. C. R. Math. Acad. Sci. Paris, Ser. I 338, 853–858 (2004)

    MATH  MathSciNet  Google Scholar 

  54. Penot J.-P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal. 58, 855–871 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  55. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1969)

    Google Scholar 

  56. Sanchez-Palencia E.: Solutions périodiques par rapport aux variables d’espace et applications. C. R. Acad. Sci. Paris Sér. A 271, 1129–1132 (1970)

    MATH  MathSciNet  Google Scholar 

  57. Sanchez-Palencia E.: Non-Homogeneous Media and Vibration Theory. Springer, New York (1980)

    MATH  Google Scholar 

  58. Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa 22(3), 571–597 (1968); errata, ibid. 22(3), 673 (1968)

  59. Showalter R.E.: Monotone Operators in Banch Spaces and Nonlinear P.D.E.s. AMS, Providence (1997)

    Google Scholar 

  60. Tartar, L.: Course Peccot. Collège de France, Paris 1977. (Unpublished, partially written in [48])

  61. Tartar, L.: Nonlocal effects induced by homogenization. In: Partial Differential Equations and the Calculus of Variations, Vol. II (Eds. F. Colombini, A. Marino, L. Modica and S. Spagnolo) Birkhäuser, Boston, 925–938, 1989

  62. Tartar L.: Memory effects and homogenization. Arch. Ration. Mech. Anal. 111, 121–133 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  63. Tartar, L.: Mathematical tools for studying oscillations and concentrations: from Young measures to H-measures and their variants. In: Multiscale Problems in Science and Technology. (Eds. N. Antonić, C.J. van Duijn, W. Jäger, A. Mikelić) Springer, Berlin, 1–84, 2002

  64. Visintin A.: Homogenization of the nonlinear Kelvin–Voigt model of visco-elasticity and of the Prager model of plasticity. Continuum. Mech. Thermodyn. 18, 223–252 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  65. Visintin A.: Two-scale convergence of some integral functionals. Calc. Var. Partial Differ. Eq. 29, 239–265 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. Visintin A.: Homogenization of a doubly-nonlinear Stefan-type problem. S.I.A.M. J. Math. Anal. 39, 987–1017 (2007)

    MATH  MathSciNet  Google Scholar 

  67. Visintin A.: Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl. 89, 477–504 (2008)

    MATH  MathSciNet  Google Scholar 

  68. Visintin A.: Electromagnetic processes in doubly-nonlinear composites. Communications in P.D.E.s 33, 1–34 (2008)

    Article  MathSciNet  Google Scholar 

  69. Visintin A.: Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl–Reuss model of elastoplasticity. R. Soc. Edinb. Proc. A 138, 1363–1401 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  70. Visintin A.: Extension of the Brezis–Ekeland–Nayroles principle to monotone operators. Adv. Math. Sci. Appl. 18, 633–650 (2008)

    MATH  MathSciNet  Google Scholar 

  71. Visintin A.: Upscaling and downscaling in nonlinear homogenization. Calc. Var. Partial Differ. Eq. 36, 565–590 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Visintin.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visintin, A. Scale-Transformations in the Homogenization of Nonlinear Magnetic Processes. Arch Rational Mech Anal 198, 569–611 (2010). https://doi.org/10.1007/s00205-010-0296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0296-8

Keywords

Navigation