Skip to main content
Log in

The Benjamin–Lighthill Conjecture for Near-Critical Values of Bernoulli’s Constant

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In 1954, Benjamin and Lighthill made a conjecture concerning the classical nonlinear problem of steady gravity waves on water of finite depth. According to this conjecture, a point of some cusped region on the (r, s)-plane (r and s are the non-dimensional Bernoulli’s constant and the flow force, respectively), corresponds to every steady wave motion described by the problem. Conversely, at least one steady flow corresponds to every point of the region. In the present paper, this conjecture is proved for near-critical flows (when r attains values close to one), under the assumption that the slopes of wave profiles are bounded. Another question studied here concerns the uniqueness of solutions, and it is proved that for every near-critical value of r only the following waves do exist: (i) a unique (up to translations) solitary wave; (ii) a family of Stokes waves (unique up to translations), which is parametrised by the distance from the bottom to the wave crest. The latter parameter belongs to the interval bounded below by the depth of the subcritical uniform stream and above by the distance from the bottom to the crest of solitary wave corresponding to the chosen value of r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick C.J.: Bounds for water waves. Arch. Rational Mech. Anal. 99, 91–114 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Amick C.J., Toland J.F.: On solitary waves of finite amplitude. Arch. Rational Mech. Anal. 76, 9–95 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Amick C.J., Toland J.F.: On periodic water-waves and their convergence to solitary waves in the long-wave limit. Phil. Trans. R. Soc. Lond. A 303, 633–669 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Benjamin T.B.: Verification of the Benjamin–Lighthill conjecture about steady water waves. J. Fluid Mech. 295, 337–356 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Benjamin T.B., Lighthill M.J.: On cnoidal waves and bores. Proc. R. Soc. Lond. A 224, 448–460 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Buffoni B., Dancer E.N., Toland J.F.: The sub-harmonic bifurcation of Stokes waves. Arch. Rational Mech. Anal. 152, 241–271 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Byatt-Smith J.G.B.: An exact integral equation for steady surface waves. Proc. R. Soc. Lond. A 315, 405–418 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  8. Chen B., Saffman P.G.: Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Math. 62, 1–21 (1980)

    MATH  MathSciNet  Google Scholar 

  9. Craig W., Sternberg P.: Symmetry of solitary waves. Comm. Part. Differ. Equ. 13, 603–633 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Craig W., Nicholls D.P.: Travelling gravity water waves in two and three dimensions. Eur. J. Mech. B/Fluids 21, 615–641 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dias, F., Iooss, G.: Water-waves as a spatial dynamical system. In: Handbook of Mathematical Fluid Dynamics, Vol. II (Eds. Friedlander, S., Serre, D.). Elsevier, Amsterdam, 443–499, 2003

  12. Earnshaw S.: The mathematical theory of the two great solitary waves of the first order. Trans. Camb. Phil. Soc. 8, 326–341 (1847)

    Google Scholar 

  13. Evans W.A.B., Ford M.J.: Integral equation for solitary waves (with new numerical results for some ‘internal’ properties). Proc. R. Soc. Lond. A 452, 373–390 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Friedrichs K.O., Hyers D.H.: The existence of solitary waves. Comm. Pure Appl. Math. 7, 517–550 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  15. Groves M.D.: Steady water waves. J. Nonlinear Math. Phys. 11, 435–460 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Hörmander, L.: The Analysis of Linear Partial Differential Operators, Vol. I. Springer, Berlin, 1983

  17. Keady G., Norbury J.: Water waves and conjugate streams. J. Fluid Mech. 70, 663–671 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Kozlov V., Kuznetsov N.: Bounds for arbitrary steady gravity waves on water of finite depth. J. Math. Fluid Mech. 11, 325–347 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Kozlov V., Kuznetsov N.: On behaviour of free-surface profiles for bounded steady water waves. J. Math. Pures Appl. 90, 1–14 (2008)

    MATH  MathSciNet  Google Scholar 

  20. Kozlov V., Kuznetsov N.: Fundamental bounds for steady water waves. Math. Ann. 345, 643–655 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lavrentiev M.A.: On the theory of long waves. C. R. (Doklady) Acad. Sci. USSR 41, 275–277 (1943)

    Google Scholar 

  22. Lavrentiev, M.A.: On the theory of long waves. Prikl. Mekh. Tekhn. Fiz., no. 5, 3–46 (1975) (in Russian). Translated as J. Appl. Mech. Tech. Phys. 16, 659–702 (1975)

  23. Lewy H.: A note on harmonic functions and a hydrodynamic application. Proc. Am. Math. Soc. 3, 111–113 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nekrasov, A.I.: The exact theory of steady waves on the surface of a heavy fluid. Izdat. Akad. Nauk SSSR, Moscow, 1951. Also in: Collected papers, Vol. I, Izdat. Akad. Nauk SSSR, Moscow, 1961, 358–439. (Both in Russian.) Translated as University of Wisconsin MRC Report no. 813 (1967)

  25. Nirenberg L.: Topics in Nonlinear Functional Analysis. AMS, Providence (2001)

    MATH  Google Scholar 

  26. Ovsyannikov, L.V.: Parameters of cnoidal waves. In: Problems of Mathematics and Mechanics, M. A. Lavrentiev Memorial Volume. Nauka, Novosibirsk, 150–166, 1980 (in Russian)

  27. Plotnikov P.I.: Non-uniqueness of solution of the problem of solitary waves and bifurcation of critical points of smooth functionals. Math. USSR Izv. 38, 333–357 (1992)

    Article  MathSciNet  Google Scholar 

  28. Plotnikov P.I., Toland J.F.: Convexity of Stokes waves of extreme form. Arch. Rational Mech. Anal. 171, 349–416 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Pommerenke C.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992)

    MATH  Google Scholar 

  30. Rayleigh, Lord (J.W. Strutt): On waves. Phil. Mag. 1(5), 257–279 (1876). Also in: Scientific Papers, Vol. I. Cambridge, 251–279, 1899

  31. Scott Russell, J.: Report on Waves. Rep. 14th meet. Brit. Assos. Adv. Sci. John Murray, London, 311–390, 1844

  32. Stokes, G.G.: On the theory of oscillatory waves. Camb. Phil Soc. Trans. 8, 441–455 (1847). Also in: Mathematical and Physical Papers, Vol. I. Cambridge, 197–219, 1880

  33. Struik D.J.: Détermination rigoureuse des ondes périodiques dans un canal à profondeur finie. Math. Ann. 95, 595–634 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vanden-Broeck J.-M.: Some new gravity waves in water of finite depth. Phys. Fluids 26, 2385–2387 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Zeidler E.: Nonlinear Functional Analysis and its Applications Vol. I. Springer, Berlin (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kuznetsov.

Additional information

Communicated by C.A. Stuart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, V., Kuznetsov, N. The Benjamin–Lighthill Conjecture for Near-Critical Values of Bernoulli’s Constant. Arch Rational Mech Anal 197, 433–488 (2010). https://doi.org/10.1007/s00205-009-0279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0279-9

Keywords

Navigation