Skip to main content
Log in

Solutions of a Nonlinear Dirac Equation with External Fields

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the stationary Dirac equation

$$-ic\hbar{\sum^3_{k=1}}\alpha_k\partial_k u+mc^2\beta u+M(x) u= R_u(x,u),$$

where M(x) is a matrix potential describing the external field, and R(x, u) stands for an asymptotically quadratic nonlinearity modeling various types of interaction without any periodicity assumption. For ħ fixed our discussion includes the Coulomb potential as a special case, and for the semiclassical situation (ħ → 0), we handle the scalar fields. We obtain existence and multiplicity results of stationary solutions via critical point theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H., Zehnder E.: Nontrivial solutions for a class of non-resonance problems and applications to nonlinear differential equations. Ann. Sc. Norm. Super Pisa 7, 539–603 (1980)

    MATH  MathSciNet  Google Scholar 

  2. Ackermans N.: On a peridic Schrödinger equation with nonlocal part. Math. Z. 248, 423–443 (2004)

    MathSciNet  Google Scholar 

  3. Balabane M., Cazenave T., Douady A., Merle F.: Existence of excited states for a nonlinear Dirac field. Comm. Math. Phys. 119, 153–176 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Balabane M., Cazenave T., Vazquez L.: Existence of standing waves for Dirac fields with singular nonlinearities. Comm. Math. Phys. 133, 53–74 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bartsch T., Ding Y.H.: On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313, 15–37 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartsch T., Ding Y.H.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279, 1267–1288 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartsch T., Ding Y.H.: Solutions of nonlinear Dirac equations. J. Differ. Equ. 226, 210–249 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bär C., Strohmaier A.: Semi-bounded restrictions of Dirac type operators and the unique continuation property. Differ. Geom. Appl. 15, 175–182 (2001)

    Article  MATH  Google Scholar 

  9. Bjorken J.D., Drell S.D.: Relativistic Quantum Fields. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  10. Booss-Bavnbek B.: Unique continuation property for Dirac operator, revisited. Contemp. Math. 258, 21–32 (2000)

    MathSciNet  Google Scholar 

  11. Cazenave T., Vazquez L.: Existence of local solutions for a classical nonlinear Dirac field. Comm. Math. Phys. 105, 35–47 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Dautray R., Lions J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1990)

    Google Scholar 

  13. Ding Y.H.: Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms. Commun. Contemp. Math. 8, 453–480 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ding, Y.H., Jeanjean, L.: Homoclinics in a Hamiltonian system without periodicity (preprint)

  15. Ding Y.H., Szulkin A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. & PDEs 29, 397–419 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Edmunds D.E., Evans W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  17. Esteban M.J., Séré E.: Stationary states of the nonlinear Dirac equation: a variational approach. Comm. Math. Phys. 171, 323–350 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Esteban M.J., Séré E.: An overview on linear and nonlinear Dirac equations. Discr. Contin. Dyn. Syst. 8, 281–397 (2002)

    Google Scholar 

  19. Finkelstein R., Fronsdal C.F., Kaus P.: Nonlinear spinor field theory. Phys. Rev. 103, 1571–1579 (1956)

    Article  MATH  ADS  Google Scholar 

  20. Grandy W.T.: Relativistic Quantum Mechanics of Leptons and Fields, Fundamental Theories of Physics, vol. 41. Kluwer, Dordrecht (1991)

    Google Scholar 

  21. Griesemer M., Siedentop H.: A minimax principle for the eigenvalues in spectral gaps. J. Lond. Math. Soc. 60, 490–500 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jörgens, K.: Perturbations of the Dirac Operator. Proceedings of the conference on the theory of ordinary and partial differential equations, Dundee (Scotland) 1972, p. 87–102. (Eds. W.N. Everitt and B.D. Sleeman) Lecture Notes in Mathematics 280, Springer, Berlin, 1972

  23. Kryszewki W., Szulkin A.: Generalized linking theorem with an application to semilinear Schrödinger equation. Adv. Differ. Equ. 3, 441–472 (1998)

    Google Scholar 

  24. Merle F.: Existence of stationary states for nonlinear Dirac equations. J. Differ. Equ. 74, 50–68 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ranada, A.F.: Classical Nonlinear Dirac Field Models of Extended Particles. In: Barut, A.O. (ed.) Quantum Theory, Groups, Fields and Particles. Reidel, Amsterdam (1982)

  26. Reed M., Simon B.: Methods of Mathematical Physics. Vol. I–IV. Academic Press, London (1978)

    Google Scholar 

  27. Soler M.: Classical stable nonlinear spinor field with positive rest energy. Phys. Rev. D 1, 2766–2769 (1970)

    Article  ADS  Google Scholar 

  28. Stuart C.A., Zhou H.S.: Axisymmetric TE-Modes in a self-focusing Dielectric, SIAM J. Math. Anal. 137, 218–237 (2005)

    MathSciNet  Google Scholar 

  29. Thaller B.: The Dirac Equation, Texts and Monographs in Physics. Springer, Berlin (1992)

    Google Scholar 

  30. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Ruf.

Additional information

Communicated by C.A. Stuart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Ruf, B. Solutions of a Nonlinear Dirac Equation with External Fields. Arch Rational Mech Anal 190, 57–82 (2008). https://doi.org/10.1007/s00205-008-0163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0163-z

Keywords

Navigation