Abstract
In this paper we consider the XY (N-dimensional possibly anisotropic) spin-type model and, by comparison with a Ginzburg–Landau-type functional, we perform a variational analysis in the limit when the number of particles diverges. In particular we show how the appearance of vortex-like singularities can be described by properly scaling the energy of the system through a Γ-convergence procedure. We also address the problem in the case of long-range interactions and solve it in two dimensions.
This is a preview of subscription content, access via your institution.
References
Alberti G., Baldo S., Orlandi G.: Variational convergence for functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54(5), 1411–1472 (2005)
Alberti G., Baldo S., Orlandi G.: Functions with prescribed singularities. J. Eur. Math. Soc. (JEMS) 5(3), 275–311 (2003)
Alicandro R., Braides A., Cicalese M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1(1), 85–107 (2006)
Alicandro, R., Braides, A., Cicalese, M.: Continuum limits of discrete thin films with superlinear growth densities. Calc. Var. Partial Diff. Eq. (to appear)
Alicandro R., Cicalese M.: A general integral representation result for the continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36(1), 1–37 (2004)
Alicandro, R., Cicalese, M., Gloria, A.: Integral representation and homogenization result for bounded and unbounded spin systems, Nonlinearity (to appear)
Alicandro, R., Cicalese, M., Ponsiglione, M.: in preparation
Alicandro R., Focardi M., Gelli M.S.: Finite-difference approximation of energies in fracture mechanics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(3), 671–709 (2000)
Blanc X., Le Bris C., Lions P.L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164(4), 341–381 (2002)
Blanc X., Le Bris C., Lions P.L.: Atomistic to continuum limits for computational materials science. M2AN Math. Model. Numer. Anal. 41(2), 391–426 (2007)
Berezinskii V.L.: Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems . Sov. Phys. JETP 32, 493–500 (1971)
Bethuel F., Brezis H., Hélein F.: Ginzburg–Landau vortices. Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser, Boston MA (1994)
Braides A.: Γ-convergence for beginners. Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford (2002)
Braides, A.: A handbook of Γ-convergence, in Handbook of Differential Equations.Stationary Partial Differential Equations, Vol. 3 (Eds. Chipot M. and Quittner P.) Elsevier, Amsterdam, 2006
Braides A., Gelli M.S.: Limits of discrete systems with long range interactions. J. Convex Anal. 9, 363–399 (2002)
Braides A., Truskinowsky L.: Asymptotic expansions by Γ-convergence. Cont. Mech. Therm. 20, 21–62 (2008)
Dal Maso G.: An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston, Inc., Boston (1993)
Federer, H.: Geometric measure theory, Grundlehren der mathematischen Wissenschaften, Vol. 153. Springer-Verlag, Berlin–New York, 1969. Reprinted in the series Classics in Mathematics. Springer, Berlin, 1996
Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations. I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebeite. 3. Folge (A series of modern surveys in mathematics), vol. 37. Springer, Berlin, 1998
Jerrard R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746 (1999)
Jerrard R.L., Soner H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Var. Partial Differential Equations 14(2), 151–191 (2002)
Jerrard R.L., Soner H.M.: Limiting behavior of the Ginzburg–Landau functional. J. Funct. Anal. 192(2), 524–561 (2002)
Kleman M., Lavrentovich O.D.: Soft Matter Physics: An Introduction. Springer, New York (2003)
Kosterlitz J.M.: The critical properties of the two-dimensional xy model. J. Phys. C 6, 1046–1060 (1973)
Kosterlitz J.M., Thouless D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973)
Mermin N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)
Ponsiglione M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39(2), 449–469 (2007)
Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser, Boston, MA, 2007
Schmidt, B.: On the passage from atomic to continuum theory for thin films. Arch. Rational Mech. Anal. (to appear)
Simons, B.: Phase Transitions and Collective Phenomena, lecture notes (download@http://www.tcm.phy.cam.ac.uk/~bds10/phase.html)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Dal Maso
Rights and permissions
About this article
Cite this article
Alicandro, R., Cicalese, M. Variational Analysis of the Asymptotics of the XY Model. Arch Rational Mech Anal 192, 501–536 (2009). https://doi.org/10.1007/s00205-008-0146-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-008-0146-0
Keywords
- Vortex
- Variational Analysis
- Continuum Limit
- Integral Boundary
- Landau Energy