Skip to main content

Variational Analysis of the Asymptotics of the XY Model

Abstract

In this paper we consider the XY (N-dimensional possibly anisotropic) spin-type model and, by comparison with a Ginzburg–Landau-type functional, we perform a variational analysis in the limit when the number of particles diverges. In particular we show how the appearance of vortex-like singularities can be described by properly scaling the energy of the system through a Γ-convergence procedure. We also address the problem in the case of long-range interactions and solve it in two dimensions.

This is a preview of subscription content, access via your institution.

References

  1. Alberti G., Baldo S., Orlandi G.: Variational convergence for functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54(5), 1411–1472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alberti G., Baldo S., Orlandi G.: Functions with prescribed singularities. J. Eur. Math. Soc. (JEMS) 5(3), 275–311 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alicandro R., Braides A., Cicalese M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1(1), 85–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alicandro, R., Braides, A., Cicalese, M.: Continuum limits of discrete thin films with superlinear growth densities. Calc. Var. Partial Diff. Eq. (to appear)

  5. Alicandro R., Cicalese M.: A general integral representation result for the continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36(1), 1–37 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alicandro, R., Cicalese, M., Gloria, A.: Integral representation and homogenization result for bounded and unbounded spin systems, Nonlinearity (to appear)

  7. Alicandro, R., Cicalese, M., Ponsiglione, M.: in preparation

  8. Alicandro R., Focardi M., Gelli M.S.: Finite-difference approximation of energies in fracture mechanics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(3), 671–709 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Blanc X., Le Bris C., Lions P.L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164(4), 341–381 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanc X., Le Bris C., Lions P.L.: Atomistic to continuum limits for computational materials science. M2AN Math. Model. Numer. Anal. 41(2), 391–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berezinskii V.L.: Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems . Sov. Phys. JETP 32, 493–500 (1971)

    ADS  MathSciNet  Google Scholar 

  12. Bethuel F., Brezis H., Hélein F.: Ginzburg–Landau vortices. Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser, Boston MA (1994)

    MATH  Google Scholar 

  13. Braides A.: Γ-convergence for beginners. Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford (2002)

    Google Scholar 

  14. Braides, A.: A handbook of Γ-convergence, in Handbook of Differential Equations.Stationary Partial Differential Equations, Vol. 3 (Eds. Chipot M. and Quittner P.) Elsevier, Amsterdam, 2006

  15. Braides A., Gelli M.S.: Limits of discrete systems with long range interactions. J. Convex Anal. 9, 363–399 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Braides A., Truskinowsky L.: Asymptotic expansions by Γ-convergence. Cont. Mech. Therm. 20, 21–62 (2008)

    Article  MathSciNet  Google Scholar 

  17. Dal Maso G.: An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston, Inc., Boston (1993)

    Google Scholar 

  18. Federer, H.: Geometric measure theory, Grundlehren der mathematischen Wissenschaften, Vol. 153. Springer-Verlag, Berlin–New York, 1969. Reprinted in the series Classics in Mathematics. Springer, Berlin, 1996

  19. Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variations. I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebeite. 3. Folge (A series of modern surveys in mathematics), vol. 37. Springer, Berlin, 1998

  20. Jerrard R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jerrard R.L., Soner H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Var. Partial Differential Equations 14(2), 151–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jerrard R.L., Soner H.M.: Limiting behavior of the Ginzburg–Landau functional. J. Funct. Anal. 192(2), 524–561 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kleman M., Lavrentovich O.D.: Soft Matter Physics: An Introduction. Springer, New York (2003)

    Google Scholar 

  24. Kosterlitz J.M.: The critical properties of the two-dimensional xy model. J. Phys. C 6, 1046–1060 (1973)

    Article  Google Scholar 

  25. Kosterlitz J.M., Thouless D.J.: Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973)

    Article  ADS  Google Scholar 

  26. Mermin N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ponsiglione M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39(2), 449–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser, Boston, MA, 2007

  29. Schmidt, B.: On the passage from atomic to continuum theory for thin films. Arch. Rational Mech. Anal. (to appear)

  30. Simons, B.: Phase Transitions and Collective Phenomena, lecture notes (download@http://www.tcm.phy.cam.ac.uk/~bds10/phase.html)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cicalese.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alicandro, R., Cicalese, M. Variational Analysis of the Asymptotics of the XY Model. Arch Rational Mech Anal 192, 501–536 (2009). https://doi.org/10.1007/s00205-008-0146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0146-0

Keywords

  • Vortex
  • Variational Analysis
  • Continuum Limit
  • Integral Boundary
  • Landau Energy