Skip to main content
Log in

Multiscale Young Measures in almost Periodic Homogenization and Applications

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the existence of multiscale Young measures associated with almost periodic homogenization. We give applications of this tool in the homogenization of nonlinear partial differential equations with an almost periodic structure, such as scalar conservation laws, nonlinear transport equations, Hamilton–Jacobi equations and fully nonlinear elliptic equations. Motivated by the application in nonlinear transport equations, we also prove basic results on flows generated by Lipschitz almost periodic vector fields, which are of interest in their own. In our analysis, an important role is played by the so-called Bohr compactification \({\mathbb {G}^N}\) of \({\mathbb {R}^N}\) ; this is a natural parameter space for the Young measures. Our homogenization results provide also the asymptotic behavior for the whole set of \({\mathbb {G}^N}\) -translates of the solutions, which is in the spirit of recent studies on the homogenization of stationary ergodic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G. (1992) Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6): 1482–1518

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire G., Briane M. (1996) Multiscale convergence and reiterated homogenisation. Proc. Roy. Soc. Edinburgh Sect. A 126(2): 297–342

    Article  MathSciNet  MATH  Google Scholar 

  3. Amadori D. (2006) On the homogenization of conservation laws with resonant oscillatory source. Asymptotic Anal. 46(1): 53–79

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio L., Fusco N., Pallara D. (2000) Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford

    MATH  Google Scholar 

  5. Arisawa, M.: Multiscale homogenization for first-order Hamilton–Jacobi equations. Preprint

  6. Arisawa M. (2001) Quasi-periodic homogenizations for second-order Hamilton–Jacobi–Bellman equations. Adv. Math. Sci. Appl. 11(1): 465–448

    MathSciNet  MATH  Google Scholar 

  7. Ball, J.M.: A version of the fundamental theorem for Young measures. Partial Differential Equations and Continuum Models of Phase Transitions, Vol. 344. (Eds. Rascle M., Serre D. and Slemrod M.) Lecture Notes in Physics, Springer, Berlin, 207–215, 1989

  8. Bensoussan A., Lions J.L., Papanicolaou G. (1978) Asymptotic Analysis of Periodic Structures. North-Holland, Amsterdam

    MATH  Google Scholar 

  9. Besicovitch A.S. (1932) Almost Periodic Functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  10. Bourgeat A., Mikelic A., Steve Wright. (1994) Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456: 19–51

    MathSciNet  MATH  Google Scholar 

  11. Bohr H. (1947) Almost Periodic Functions. Chelsea, New York

    MATH  Google Scholar 

  12. Braides A., Defranceschi A. (1998) Homogenization of Multiple Integrals. Oxford University Press, Oxford

    MATH  Google Scholar 

  13. Caffarelli L.A. (1989) Interior estimates for solutions of fully nonlinear equations. Ann. Math. 131: 189–213

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations, Vol. 43. American Mathematical Society, Colloquium, Providence, RI, 1995

  15. Caffarelli L., Souganidis P.E., Wang C. (2005) Homogenization of nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Comm. Pure Appl. Math. 58(3): 319–361

    Article  MathSciNet  MATH  Google Scholar 

  16. Casado-Diaz J., Gayte I. (2002) The two-scale convergence method applied to generalized Besicovitch spaces. Proc. R. Soc. Lond. A 458: 2925–2946

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chen G.-Q., Frid H. (1999) Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147(2): 89–118

    Article  MathSciNet  MATH  Google Scholar 

  18. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67

  19. Dal Maso, G., Modica, L.: Nonlinear stochastic homogenization. Ann. Mat. Pura ed Appl. 347–389 (1985)

  20. Dunford, N., Schwartz, J.T.: Linear Operators. Parts I and II. Interscience Publishers, New York, 1958, 1963

  21. DiPerna R.J. (1983) Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82: 27–70

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. DiPerna R.J. (1983) Convergence of the viscosity method for isentropic gas dynamics. Comm. Math. Phys. 91: 1–30

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. DiPerna R.J. (1985) Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88: 223–270

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Evans L.C. (1992) Periodic homogenization of certain fully nonlinear PDE. Proc. R. Soc. Edinburgh 120: 245–265

    Article  Google Scholar 

  25. Evans L.C., Gariepy R.J. (1992) Lecture Notes on Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton

    MATH  Google Scholar 

  26. Evans L.C., Gomes D. (2001) Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Rational Mech. Anal. 157(1): 1–33

    Article  MathSciNet  MATH  Google Scholar 

  27. Gelfand I.M., Raikov D.A., Chilov G.E. (1964) Commutative normed rings. Chelsea, New York

    Google Scholar 

  28. Guichardet A. (1968) Analyse Hamonique Commutative. Dunod, Paris

    MATH  Google Scholar 

  29. Ishii H. (1987) Perron’s method for Hamilton–Jacobi equations. Duke Math. J. 55(2): 369–384

    Article  MathSciNet  MATH  Google Scholar 

  30. Ishii H. (1989) On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s. Comm. Pure Appl. Math. 42: 15–45

    Article  MathSciNet  MATH  Google Scholar 

  31. Ishii, H.: Almost periodic homogenization of Hamilton–Jacobi equations. International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), World Scientific Publishing, River Edge, NJ, 600–605, 2000

  32. Jensen R. (1988) The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Rational Mech. Anal. 101: 1–27

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Jikov V.V., Kozlov S.M., Oleinik O.A. (1994) Homogenization of Differential Operators and Integral Functionals. Springer, Berlin

    Book  MATH  Google Scholar 

  34. Kelley J. (1955) General Topology. D. Van Nostrand, Princeton

    MATH  Google Scholar 

  35. Kozlov S.M. (1985) The method of averaging and walks in inhomogeneous environments. Uspekhi Mat. Nauk 40(2): 61–120

    MathSciNet  MATH  Google Scholar 

  36. Kruzhkov S.N. (1970) First order quasilinear equations in several independent variables. Math. USSR-Sb. 10: 217–243

    Article  MATH  Google Scholar 

  37. Levitan B.M., Zhikov V.V. (1982) Almost Periodic Functions and Differential Equations. Cambidge University Press, New York

    MATH  Google Scholar 

  38. Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of hamilton–Jacobi equations. Unpublished preprint, 1988

  39. Lions P.-L., Souganidis P.E. (2003) Correctors for the homogenization of the Hamilton–Jacobi equations in the stationary ergodic setting. Comm. Pure Appl. Math. 56: 1501–1524

    Article  MathSciNet  MATH  Google Scholar 

  40. Mascarenhas M.L., Toader A.M. (2001) Scale convergence in homogenization. Num. Funct. Anal. Opt. 22: 127–158

    Article  MathSciNet  MATH  Google Scholar 

  41. Murat F. (1978) Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(4): 489–507

    MathSciNet  MATH  Google Scholar 

  42. Nguetseng G. (1989) A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3): 608–623

    Article  MathSciNet  MATH  Google Scholar 

  43. Nguetseng G. (2003) Mean value on locally compact abelian groups. Acta Sci. Math. (Szeged) 69(1–2): 203–221

    MathSciNet  MATH  Google Scholar 

  44. Nguetseng G. (2003) Homogenization structures and applications. I.Z. Anal. Anwendungen 22(1): 73–107

    Article  MathSciNet  MATH  Google Scholar 

  45. Nguetseng G., Nnang H. (2003) Homogenization of nonlinear monotone operators beyond the periodic setting. Eletron. J. Differ. Equ. 2003(36): 1–24

    MATH  Google Scholar 

  46. Papanicolaou, G., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. Proceed. Colloq. on random Fields, Rigorous Results in Statistical Mechanics and Quantum field Theory, Vol. 10. (Eds. Fritz J., Lebaritz J.L. and Szasz D.) Colloquia Mathematica Societ. Janos Bolyai, Budapest, 835–873, 1979

  47. Pedregal, P.: Multi-scale Young measures. Trans. Amer. Math. Soc. 358(2), 591–602

  48. Schonbek M.E. (1982) Convergence of solutions to nonlinear dispersive equations. Comm. Part. Diff. Eq. 7: 959–1000

    Article  MathSciNet  MATH  Google Scholar 

  49. Schwartz L. (1966) Théorie des Distributions. Hermann, Paris

    MATH  Google Scholar 

  50. Souganidis P.E. (1999) Stochastic homogenization of Hamilton–Jacobi equations and some application. Asymptotic Anal. 20: 141–178

    MathSciNet  Google Scholar 

  51. Tartar, L.: Compensated compactness and applications to partial differential equations. Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Vol. 4. (Ed. Knops R.J.) Pitman Press, New York, 136–211, 1979

  52. Weinan E. (1992) Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math. 45: 301–326

    Article  MathSciNet  MATH  Google Scholar 

  53. Weinan E., Serre D. (1992) Correctors for the homogenization of conservation laws with oscillatory forcing terms. Asymptotic Anal. 5: 311–316

    MathSciNet  MATH  Google Scholar 

  54. Young L.C. (1969) Lectures on Calculus of Variations and Optimal Control Theory. Saunders, Philadelphia

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio.

Additional information

Communicated by The Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosio, L., Frid, H. Multiscale Young Measures in almost Periodic Homogenization and Applications. Arch Rational Mech Anal 192, 37–85 (2009). https://doi.org/10.1007/s00205-008-0127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0127-3

Keywords

Navigation