Skip to main content
Log in

Hopf Bifurcation of Viscous Shock Waves in Compressible Gas Dynamics and MHD

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Extending our previous results for artificial viscosity systems, we show, under suitable spectral hypotheses, that shock wave solutions of compressible Navier–Stokes and magnetohydrodynamics equations undergo Hopf bifurcation to nearby time-periodic solutions. The main new difficulty associated with physical viscosity and the corresponding absence of parabolic smoothing is the need to show that the difference between nonlinear and linearized solution operators is quadratically small in H s for data in H s. We accomplish this by a novel energy estimate carried out in Lagrangian coordinates; interestingly, this estimate is false in Eulerian coordinates. At the same time, we greatly sharpen and simplify the analysis of the previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander J., Gardner R., Jones C.K.R.T. (1990) A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410, 167–212

    MATH  MathSciNet  Google Scholar 

  2. Barker B., Humpherys J., Rudd K., Zumbrun K. Stability of viscous shocks in isentropic gas dynamics, 2006, preprint

  3. Bourlioux A., Majda A., Roytburd V. (1991) Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bridges T.J., Derks G., Gottwald G. (2002) Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Phys. D 172(1–4): 190–216

    Article  MATH  MathSciNet  Google Scholar 

  5. Brin, L.: Numerical testing of the stability of viscous shock waves. Doctoral thesis, Indiana University, 1998

  6. Brin L.Q. (2001) Numerical testing of the stability of viscous shock waves. Math. Comp. 70 (235): 1071–1088

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Brin L., Zumbrun K. (2002) Analytically varying eigenvectors and the stability of viscous shock waves. Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001). Mat. Contemp. 22:19–32

    MATH  MathSciNet  Google Scholar 

  8. Carr J. Applications of centre manifold theory. Applied Mathematical Sciences, Vol. 35. Springer, New York, vi+142 pp, 1981. ISBN: 0-387-90577-4

  9. Costanzino, N., Humpherys, J., Nguyen, T., Zumbrun, K.: Spectral stability of noncharacteristic isentropic Navier–Stokes boundary layers, 2007, preprint

  10. Danchin R. (2000) Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141(3): 579–614

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Dodd, J.: Convection stability of shock profile solutions of a modified KdV-Burgers equation. Thesis, University of Maryland, 1996

  12. Erpenbeck J.J. (1967) Nonlinear theory of unstable one-dimensional detonations. Phys. Fluids 10(2): 274–289

    Article  MATH  ADS  Google Scholar 

  13. Fickett, Wood (1966) Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903–916

    Article  ADS  Google Scholar 

  14. Gardner R., Jones C.K.R.T. (1991) A stability index for steady state solutions of boundary value problems for parabolic systems. J. Differ. Eq. 91(2): 181–203

    Article  MATH  MathSciNet  Google Scholar 

  15. Gardner R., Jones C.K.R.T. (1989) Traveling waves of a perturbed diffusion equation arising in a phase field model. Indiana Univ. Math. J. 38(4): 1197–1222

    MathSciNet  Google Scholar 

  16. Gardner R., Jones C.K.R.T. (1998) Commun. Pure Appl. Math. 51(7): 797–855

    Article  MathSciNet  Google Scholar 

  17. Gardner, R., Zumbrun, K.: The Gap lemma and geometric criteria for instability of viscous shock profiles

  18. Gues, O., Métivier, G., Williams, M., Zumbrun, K.: Navier–Stokes regularization of multidimensional Euler shocks. Ann. Scient. de l’Ecole Norm. Sup. 39(4), no. 1, 75–175 (2006)

    Google Scholar 

  19. Hale, J., Koçak, H.: Dynamics and bifurcations. Texts in Applied Mathematics, Vol. 3. Springer, New York, xiv+568 pp, 1991. ISBN: 0-387-97141-6

  20. Humpherys, J., Lafitte, O., Zumbrun, K.: Stability of viscous shock profiles in the high Mach number limit, 2007, preprint

  21. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics. Springer, Berlin, iv + 348 pp, 1981

  22. Hoff, D. (1997) Discontinuous solutions of the Navier–Stokes equations for multidimensional flows of heat-conducting fluids. Arch. Ration. Mech. Anal. 139(4): 303–354

    Article  MATH  Google Scholar 

  23. Hoff D. Uniqueness of weak solutions of the Navier–Stokes equations of multidimensional, compressible flow. SIAM J. Math. Anal. 37(6): 1742–1760 (2006, electronic)

    Google Scholar 

  24. Hoff D., Zumbrun K. (1995) Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603–676

    Article  MATH  MathSciNet  Google Scholar 

  25. Humpherys J., Zumbrun K. (2006) An efficient shooting algorithm for Evans function calculations in large systems. Phys. D 220(2): 116–126

    Article  MATH  MathSciNet  Google Scholar 

  26. Kato T. (1985) Perturbation Theory for Linear Operators. Springer, Berlin

    Google Scholar 

  27. Kasimov A.R., Stewart D.S. (2002) Spinning instability of gaseous detonations. J. Fluid Mech. 466, 179–203

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Kunze M., Schneider G. (2004) Exchange of stability and finite-dimensional dynamics in a bifurcation problem with marginally stable continuous spectrum. Z. Angew. Math. Phys. 55, 383–399

    Article  MATH  MathSciNet  Google Scholar 

  29. Li, C.: On the Dynamics of Navier–Stokes and Euler Equations, 2006, preprint

  30. Lyng G., Zumbrun K. (2004) A stability index for detonation waves in Majda’s model for reacting flow. Phys. D 194(1–2): 1–29

    Article  MATH  MathSciNet  Google Scholar 

  31. Lyng G., Zumbrun K. (2004) One-dimensional stability of viscous strong detonation waves. Arch. Ration. Mech. Anal. 173(2): 213–277

    Article  MATH  MathSciNet  Google Scholar 

  32. Marsden, J.E., McCracken, M.: The Hopf bifurcation and its applications. Applied Mathematical Sciences, Vol. 19. Springer, New York (1976)

  33. Mascia C., Zumbrun K. (2003) Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169(3): 177–263

    Article  MATH  MathSciNet  Google Scholar 

  34. Mascia C., Zumbrun K. (2004) Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems. Commun. Pure Appl. Math. 57(7): 841–876

    Article  MATH  MathSciNet  Google Scholar 

  35. Mascia C., Zumbrun K. (2004) Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal. 172(1): 93–131

    Article  MATH  MathSciNet  Google Scholar 

  36. Pego R.L., Weinstein M.I. (1994) Asymptotic stability of solitary waves. Commun. Math. Phys. 164(2): 305–349

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Lyng G., Raoofi M., Texier B., Zumbrun K. (2007) Pointwise Green Function Bounds and stability of combustion waves. J. Differ. Eq. 233(2): 654–698

    Article  MATH  MathSciNet  Google Scholar 

  38. Sandstede, B., Scheel, A.: Hopf bifurcation from viscous shock waves Preprint; received November 22, 2006

  39. Taylor, M.: Partial differential equations III. Applied Mathematical Sciences, Vol. 117. Springer, Heidelberg, 1996

  40. Texier B., Zumbrun K. (2005) Relative Poincaré–Hopf bifurcation and galloping instability of traveling waves. Methods Anal. Appl. 12(4): 349–380

    MATH  MathSciNet  Google Scholar 

  41. Texier, B., Zumbrun, K.: Galloping instability of viscous shock waves, to appear in Physica D

  42. Texier, B., Zumbrun, K.: Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to time-periodic galloping solutions. 2008, in preparation

  43. Trakhinin Y. (2003) A complete 2D stability analysis of fast MHD shocks in an ideal gas. Commun. Math. Phys. 236(1): 65–92

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Vanderbauwhede, A., Iooss, G.: Center manifold theory in infinite dimensions. Dynamics Reported: Expositions in Dynamical Systems. Dynam. Report. Expositions Dynam. Systems (N.S.), Vol. 1. Springer, Berlin, 125–163, 1992

  45. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. Advances in the Theory of Shock Waves. Progr. Nonlinear Differential Equations Appl., Vol. 47. Birkhäuser, Boston, 307–516, 2001

  46. Zumbrun, K.: Stability of large-amplitude shock waves of compressible Navier–Stokes equations. Handbook of Mathematical Fluid Dynamics. Elsevier, Amsterdam, 2004

  47. Zumbrun, K.: Planar stability criteria for viscous shock waves of systems with real viscosity. Hyperbolic Systems of Balance Laws, CIME School Lectures Notes (Ed. Marcati P.) Lecture Notes in Mathematics, Vol. 1911. Springer, Heidelberg, 2004

  48. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47, 741–871 (1998); Errata. Indiana Univ. Math. J. 51(4), 1017–1021 (2002)

  49. Zumbrun K., Serre D. (1999) Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Texier.

Additional information

Communicated by A. Bressan

Research of B.T. was partially supported under NSF grant number DMS-0505780.

Research of K.Z. was partially supported under NSF grant number DMS-0300487.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Texier, B., Zumbrun, K. Hopf Bifurcation of Viscous Shock Waves in Compressible Gas Dynamics and MHD. Arch Rational Mech Anal 190, 107–140 (2008). https://doi.org/10.1007/s00205-008-0112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0112-x

Keywords

Navigation