Skip to main content
Log in

Quasilinear Equations for Viscoelasticity of Strain-Rate Type

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the quasilinear m ×  m system of partial differential equations that governs the motion of a viscoelastic material of strain-rate type on a bounded domain in \({\mathbb{R}}^n\) . The dependence of the stress on both the strain and strain-rate is nonlinear, and our hypotheses allow for a potential energy which is a nonconvex function of the strain. The critical hypothesis is that the dependence of the stress function on the strain rate is uniformly strictly monotone (in the sense of Minty and Browder). We prove the existence and uniqueness of weak solutions to a natural initial-boundary value problem for a large class of constitutive functions. We then treat the question of H 2-regularity of solutions and show that, while regularity in the initial data is preserved, solutions do not, in general, become more regular than their initial data. This generalizes a result for the semilinear case due to Rybka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman S.S. (2005). Nonlinear Problems of Elasticity. Springer, New York

    MATH  Google Scholar 

  2. Antman S.S., Seidman T.I. (1996). Quasilinear hyperbolic-parabolic equations of one-dimensional viscoelasticity. J. Differential Equations 124, 132–185

    Article  MathSciNet  MATH  Google Scholar 

  3. Antman S.S., Seidman T.I. (2005). The parabolic–hyperbolic system governing the spatial motion of nonlinearly viscoelastic rods. Arch. Rat. Mech. Anal. 175: 85–150

    Article  MathSciNet  MATH  Google Scholar 

  4. Brézis H. (1973). Opérateurs maximaux monotones. North-Holland, Amsterdam

    MATH  Google Scholar 

  5. Dafermos C.M. (1969). The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity. J. Differential Equations 6, 71–86

    Article  MathSciNet  MATH  Google Scholar 

  6. Demoulini S. (2000). Weak solutions for a class of nonlinear systems of viscoelasticity. Arch. Rat. Mech. Anal. 155, 299–334

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans L.C. (1998). Partial Differential Equations. AMS Press, Providence

    MATH  Google Scholar 

  8. Friedman A., Nečas J. (1988). Systems of nonlinear wave equations with nonlinear viscosity. Pacific J. Math. 135, 29–55

    MathSciNet  MATH  Google Scholar 

  9. Gajewski H., Gröger K., Zacharias K. (1974). Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akadamie, Berlin

    MATH  Google Scholar 

  10. Giaquinta M. (1993). Introduction to regularity theory for nonlinear elliptic systems. Birkhaüser, Berlin

    MATH  Google Scholar 

  11. Hoff D., Smoller J. (1985). Solutions in the large for certain nonlinear parabolic systems. Ann. Inst. Henri Poincaré Anal. Non Linéaire 2, 213–235

    MathSciNet  MATH  Google Scholar 

  12. Larsson S., Thomée V., Wahlbin L. (1991). Finite-element methods for a strongly damped wave equation. IMA J. Numer. Anal. 11, 115–142

    Article  MathSciNet  MATH  Google Scholar 

  13. Pego R.L. (1987). Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability. Arch. Rat. Mech. Anal. 97, 353–394

    Article  MathSciNet  MATH  Google Scholar 

  14. Rybka P. (1997). The viscous damping prevents propagation of singularities in the system of viscoelasticity. Proc. Roy. Soc. Edinburgh Sect. A 127, 1067–1074

    MathSciNet  MATH  Google Scholar 

  15. Showalter R.E., Ting T.W. (1970). Pseudoparabolic partial differential equations. SIAM J. Math. Anal. 1, 1–26

    Article  MathSciNet  MATH  Google Scholar 

  16. Swart P.J., Holmes P.J. (1992). Energy minimization and the formation of microstructures in dynamic anti-plane shear. Arch. Rat. Mech. Anal. 121, 37–85

    Article  MathSciNet  MATH  Google Scholar 

  17. Tvedt, B.: Global existence of solutions and propagation of regularity for quasilinear viscoelastic systems of differential type. Ph.D. Thesis, University of California, Berkeley, 1997

  18. Yosida K. (1980). Functional Analysis. Springer, Berlin

    MATH  Google Scholar 

  19. Zeidler E. (1990). Nonlinear Functional Analysis and its Applications II/A: Linear Monotone Operators. Springer, New York

    MATH  Google Scholar 

  20. Zeidler E. (1990). Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Tvedt.

Additional information

Communicated by S.S. Antman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tvedt, B. Quasilinear Equations for Viscoelasticity of Strain-Rate Type. Arch Rational Mech Anal 189, 237–281 (2008). https://doi.org/10.1007/s00205-007-0109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0109-x

Keywords

Navigation