Skip to main content
Log in

Steady Periodic Hydroelastic Waves

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This is a study of steady periodic travelling waves on the surface of an infinitely deep irrotational ocean when the top streamline is in contact with a light frictionless membrane that strongly resists stretching and bending and the pressure in the air above is constant. It is shown that this is a free-boundary problem for the domain of a harmonic function (the stream function) which is zero on the boundary and at which its normal derivative is determined by the boundary geometry. With the wavelength fixed at 2π, we find travelling waves with arbitrarily large speeds for a significant class of membranes. Our approach is based on Zakharov’s Hamiltonian theory of water waves to which elastic effects at the surface have been added. However we avoid the Hamiltonian machinery by first defining a Lagrangian in terms of kinetic and potential energies using physical variables. A conformal transformation then yields an equivalent Lagrangian in which the unknown function is the wave height. Once critical points of that Lagrangian have been shown to correspond to the physical problem, the existence of hydroelastic waves for a class of membranes is established by maximization. Hardy spaces on the unit disc and the Hilbert transform on the unit circle play a role in the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alt H.W., Caffarelli L.A. (1981) Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325: 105–144

    MATH  MathSciNet  Google Scholar 

  2. Andrianov, A.: Hydroelastic Analysis of Floating Structures. PhD Thesis, Technische Universiteit Delft, September 2005

  3. Antman S.S. (1995) Nonlinear Problems of Elasticity. Springer, New York

    MATH  Google Scholar 

  4. Babenko K.I. (1987) Some remarks on the theory of surface waves of finite amplitude. Sov. Math. Dokl. 35(3): 599–603 (see also loc. cit. 647–650)

    MATH  Google Scholar 

  5. Baldi, P., Toland, J.F.: Steady periodic water waves under nonlinear elastic membranes (in preparation)

  6. Brevdo L. (2003) Neutral stability of, and resonances in, a vertically stratified floating ice layer. Eur. J. Mech. A Solids 22(1): 119–137

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Brevdo L., Il’ichev A. (2006) Uni-modal destabilization of a visco-elastic floating ice layer by wind stress. Eur. J. Mech. ASolids 25(3): 509–525

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Buffoni B., Dancer E.N., Toland J.F. (2000) The regularity and local bifurcation of Stokes waves. Arch. Ration. Mech. Anal. 152(3): 207–240

    Article  MATH  MathSciNet  Google Scholar 

  9. Buffoni B., Séré E., Toland J.F. (2003) Surface waves as saddle points of the energy. Calc. Var. 17: 199–220

    Article  MATH  Google Scholar 

  10. Buffoni B., Séré E., Toland J.F. (2005) Minimization methods for quasi-linear problems, with an application to periodic water waves. SIAM J. Math. Anal. 36(4): 1080–1094

    Article  MATH  MathSciNet  Google Scholar 

  11. Chern, S.S.: Curves and surfaces in Euclidian space. Studies in Global Geometry and Analysis, Studies in Mathematics, Vol. 4 (Ed. Chern, S.S.) Mathematical Association of America, 1967

  12. Dyachenko A.I., Kuznetsov E.A., Spector M.D., Zakharov V.E. (1996) Analytic description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys.Lett. A 221: 73–79

    Article  ADS  Google Scholar 

  13. Ekeland I., Temam R. (1976) Convex Analysis and Variational Problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  14. Ericksen J.L. (1975) Equilibrium of bars. J. Elast. 5: 191–201

    Article  MATH  MathSciNet  Google Scholar 

  15. Garnett, J.B.: Bounded Analytic Functions. Academic, New York, 1981 (Revised 2007, Springer, New York)

  16. Gilbarg D., Hörmander L. (1980) Intermediate Schauder estimates. Arch. Ration. Mech. Anal. 74: 297–318

    Article  MATH  Google Scholar 

  17. Gilbarg D., Trudinger N.S. (1983) Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  18. Greenhill, A.G.: Wave motion in hydrodynamics. Am. J. Math. 9(1), 62–96 (1886). http://jstor.org

  19. Guidorzi, M., Padula, M., Plotnikov, P.I.: Hopf solutions to a fluid-elastic interaction model. To appear in Mathematical Models and Methods in Applied Sciences (M3AS)

  20. Haragus-Courcelle M., Il’ichev A. (1998) Three-dimensional solitary waves in the presence of additional surface effects. Eur. J. Mech. B Fluids 17(5): 739–768

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Hegarty, G.M., Squire, V.A.: Large amplitude periodic waves beneath an ice sheet. Ice In the Environment: Proceedings of the 16th IAHR International Symposium on Ice, Vol. 2, pp. 310–317. Dunedin, NewZealand, 2002. http://www.maths.otago.ac.nz/home/downloads/vernon_squire/iahr.pdf

  22. Iooss, G., Dias, F.: Water-waves as a spatial dynamical system. Handbook of Mathematical Fluid Dynamics (Eds. Friedlander S., Serre D.) Elsevier, Amsterdam, 2003

  23. Lamb, S.H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge, 1932 and Dover, Mineola, 1945

  24. Martinez-Avendano A., Rosenthal P. (2007) An Introduction to Operators in the Hardy–Hilbert Space. Springer, New York

    Google Scholar 

  25. Parau E., Dias F. (2002) Nonlinear effects in the response of a floating ice plate to a moving load. J. Fluid Mech. 460: 281–305

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Parry, G.P.: Personal Communication. See the Acknowledgement

  27. Rudin W. (1986) Real and Complex Analysis, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  28. Schur A. (1921) Über die Schwarzsche Extremaleigenschaft des Kreises unter den Kurven Konstanter krümmung. Mathematische Annalen 8: 143–148

    Article  MathSciNet  Google Scholar 

  29. Shargorosky, E., Toland, J.F.: Bernoulli free-boundary problems. To appear in Mem. Am. Math. Soc. http://www.maths.bath.ac.uk/~jft/

  30. Toland J.F. (2007) Heavy hydroelastic travelling waves. Proc. R. Soc. Lond. A. 463: 2371–2397. doi:10.1098/rspa2007.1883.

    MATH  ADS  MathSciNet  Google Scholar 

  31. Toland J.F., Iooss I. (2004) Riemann–Hilbert and variational structure for standing waves. Far East J. Appl. Math. 15(3): 459–488

    MATH  MathSciNet  Google Scholar 

  32. Toupin R.A. (1964) Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 19: 85–112

    MathSciNet  Google Scholar 

  33. Zakharov V.E. (1968) Stability of periodic waves of finite amplitude on the surface of deep fluid. J. Appl. Mech. Tech. Phys. 2: 190–194

    ADS  Google Scholar 

  34. Zygmund, A.: Trigonometric Series I & II. Corrected reprint (1968) of 2nd edn. Cambridge University Press, Cambridge, 1959

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Toland.

Additional information

Communicated by A. Mielke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toland, J.F. Steady Periodic Hydroelastic Waves. Arch Rational Mech Anal 189, 325–362 (2008). https://doi.org/10.1007/s00205-007-0104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0104-2

Keywords

Navigation